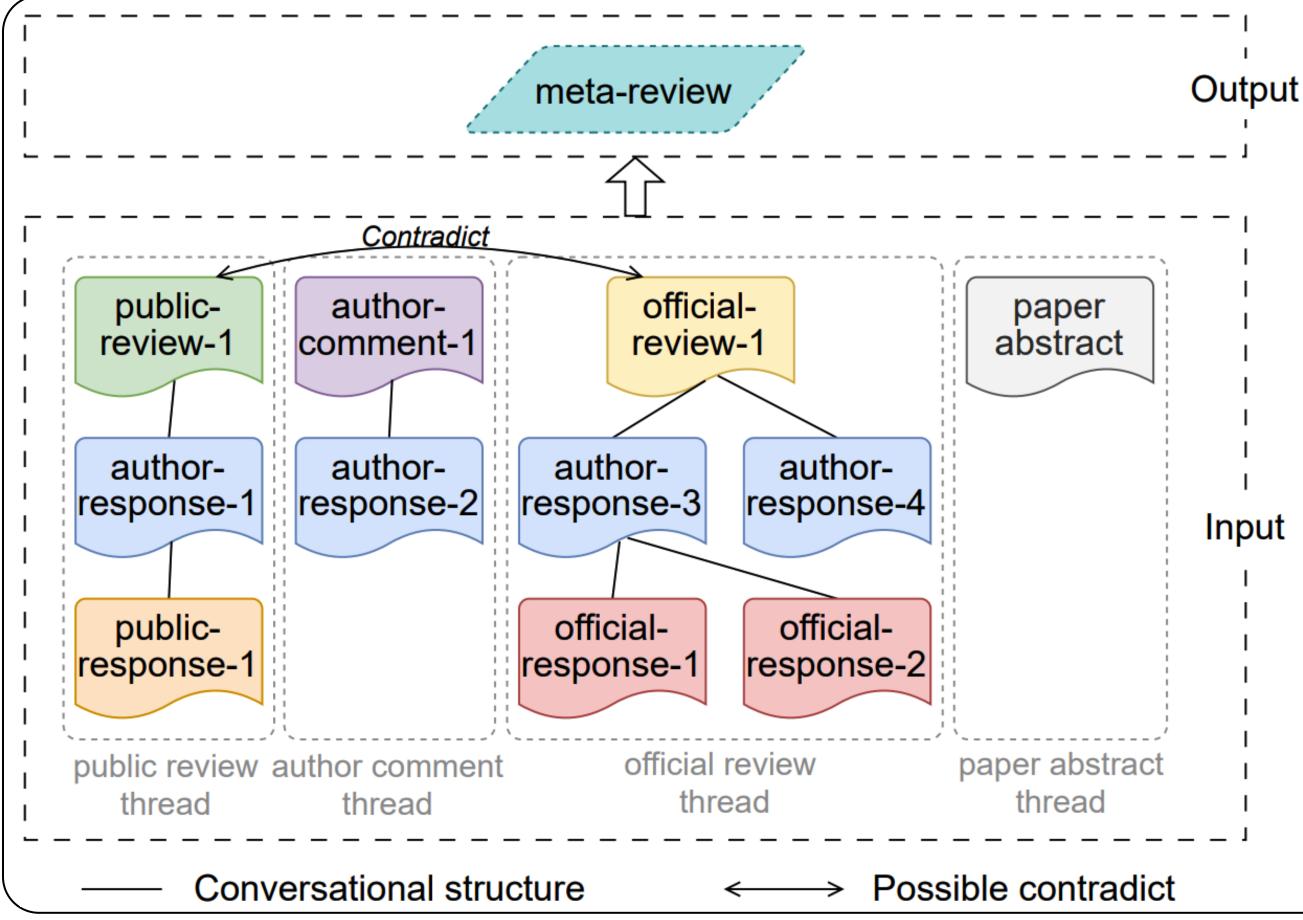


Summarizing Multiple Documents with Conversational Structure for Meta-Review Generation

Miao Li[#], Eduard Hovy^{#*}, Jey Han Lau[#] [#]The University of Melbourne ^{*}Carnegie Mellon University miao4@student.unimelb.edu.au, eduard.hovy@unimelb.edu.au, laujh@unimelb.edu.au

Meta-review Generation -> Multi-Document Summarization



- \blacktriangleright Meta-reviewers need to comprehend and carefully summarize information from individual reviews, multi-turn discussions between authors and reviewers and the paper abstract in practice
- > We formulate the creation of meta-reviews as an abstractive multidocument summarization (MDS) task
- > Most content of meta-reviews can be anchored to source documents in samples both with and without conflicts

Word-level human annotation

4 In CF samples, at least two reviewers have very different scores (≥ 4)

#Samples	Mean Rating Variance	Anchored Words
25	0.717	79.67%
35	6.668	72.74%
	25	

The Constructed PeerSum Dataset (11,995/1,499/1,499)

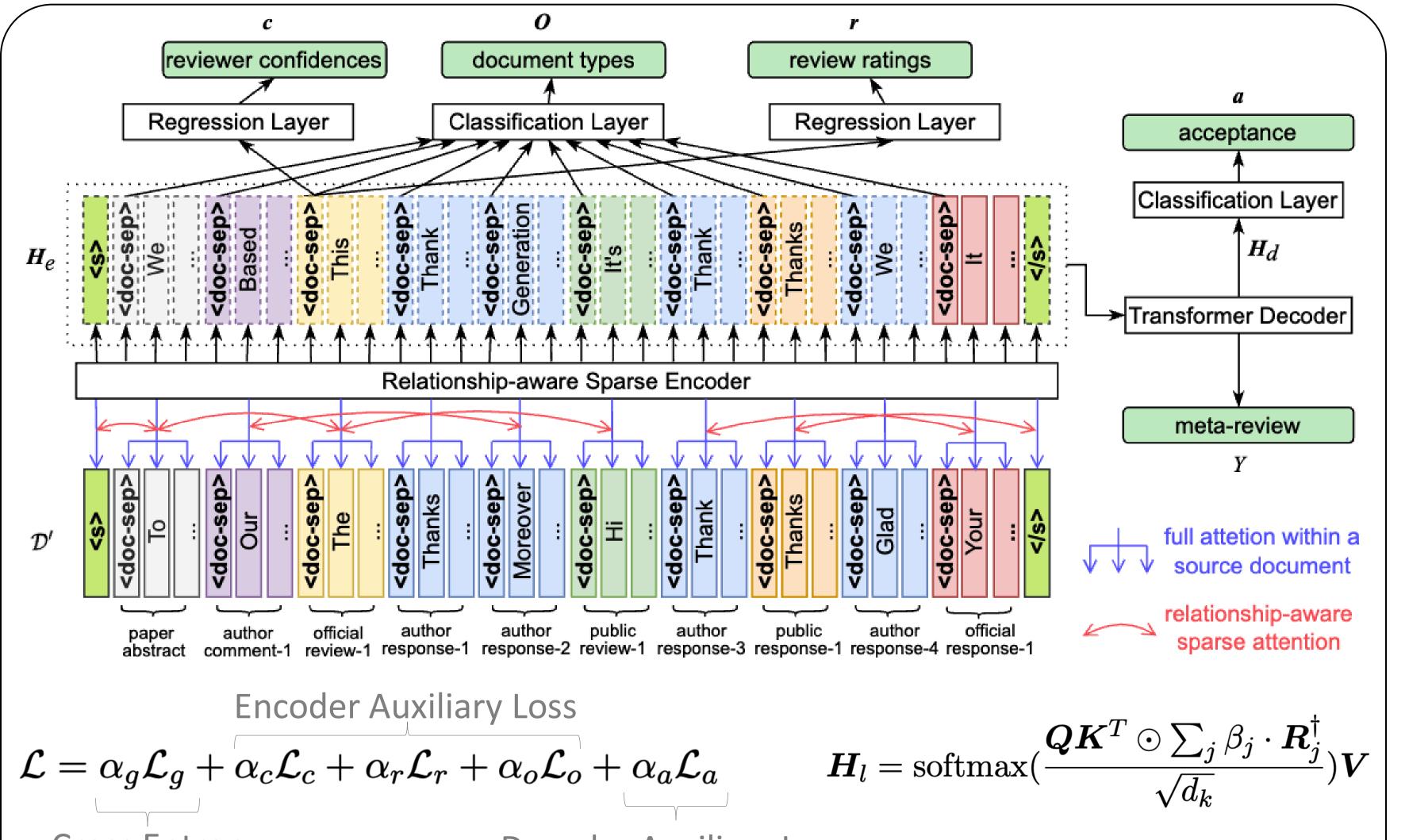
- > Meta-reviews are largely faithful to the corresponding source documents despite being highly abstractive in novel n-grams
- > Source documents have rich inter-document relationships with an explicit conversational structure
- Source documents occasionally feature *conflicts* (13.6% samples with conflicts)
- > There is a rich set of metadata, such as document type, review rating/confidence and paper acceptance outcome
- > Paper acceptance is used to assess the quality of automatically generated meta-reviews (the newly proposed evaluation metric)

"The main contribution is the novel pre-training strategy introduced. VS The work has potential high impact in the research area..."

"The approach proposed in the paper seems to be a small incremental change on top of the previous GNN pre-train work. The novelty aspect is low."

VS This paper is well written and looks correct. Introduction section is not well-written.

The RAMMER Model



Experiments (Automatic Evaluation)

Model(#Params)	Test Data	R-L ↑	BERTS ↑	ACC↑
PEGASUS (568M)	Non-CF	27.24	14.75	0.725
PRIMERA (447M)	Non-CF	28.70	12.67	0.725
LED (459M)	Non-CF	29.52	16.59	0.748
PegasusX (568M)	Non-CF	29.65	17.36	0.745
RAMMER (459M)	Non-CF	30.39*	17.42*	0.768
PEGASUS (568M)	CF	26.77	13.66	0.649
PRIMERA (447M)	CF	29.13	12.33	0.639
LED (459M)	CF	29.19	15.32	0.698
PegasusX (568M)	CF	29.30	15.69	0.707
RAMMER (459M)	CF	29.19	15.88*	0.724

 \succ Our RAMMER performs better than other models, especially in predicting the paper acceptance (ACC)

Experiments (Human Evaluation)

> Models mostly fail to recognize (i.e., identifying conflicting information) and resolve (i.e., reaching similar final decision to the human meta-reviewer) conflicts in its meta-reviews (40 samples)

Cross Entropy

Decoder Auxiliary Loss

> Developed sparse attention for pre-trained encoder-decoder models to capture the conversational structure of source documents Different attention heads pay different attention on relationships derived from the tree-like conversational structure

***** Expected to learn sematic relationships with the help of recognition of the conversational structure

> Trained with auxiliary objectives which are to predict metadata such as review rating and confidence, and the paper acceptance

The 2023 Conference on Empirical Methods in Natural Language Processing, December 6 – 10, Singapore

Model	Recognition	Resolution
PRIMERA	3/23	2/23
LED	4/23	4/23
PegasusX	5/23	5/23
RAMMER	8/23	3/23

