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Meta-review Generation -> Multi-Document Summarization
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» Meta-reviewers need to comprehend and carefully summarize
information from individual reviews, multi-turn discussions between
authors and reviewers and the paper abstract in practice

> We formulate the creation of meta-reviews as an abstractive multi-

| public-

| author- |

“** In CF samples, at least two reviewers have very different scores (> 4)

| official- paper : :
| review-1 = comment-1| review-1 | abstract | document summarization (MDS) task
| ¥ : T :
I \/f\%\ /\ i 5 » Most content of meta-reviews can be anchored to source documents
| author- author- |'/| author- author- | : : - -
: |response-1| ' response-2| ' response-3| response-4 & N samples both with and without conflicts
. — *** Word-level human annotation
I
|
I
I
I

‘| public- | official- official- |

‘response-1 " response-1, |response-2

\,/’“\ _________________ : \_/‘\\_/“\ . Data #Samples Mean Rating Variance  Anchored Words
: public review author comment official review paper abstract _
| thread thread thread thread Non—-CF (Wfﬂ Cﬂnﬂlﬂtﬁ) 25 0.717 79.67%
______________________________________ | CF (w/ conflicts) 35 6.668 72.74%

\. —— Conversational structure < > Possible contradict Y,
The Constructed PeerSum Dataset (11,995/1,499/1,499)
4 )

_

“The main contribution Is the novel pre-training strategy introduced.
The work has potential high impact in the research area...”
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“The approach proposed In the paper seems to be a small incremental change

» Meta-reviews are largely faithful to the corresponding source documents despite being highly abstractive in novel n-grams
» Source documents have rich inter-document relationships with an explicit conversational structure
» Source documents occasionally feature conflicts (13.6% samples with conflicts)

» There is a rich set of metadata, such as document type, review rating/confidence and paper acceptance outcome
» Paper acceptance is used to assess the quality of automatically generated meta-reviews (the newly proposed evaluation metric)
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on top of the previous GNN pre-train work. The novelty aspect is low. ”
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\_ review rating and confidence, and the paper acceptance
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» Developed sparse attention for pre-trained encoder-decoder models to
capture the conversational structure of source documents
*»* Different attention heads pay different attention on relationships

)v | Experiments (Human Evaluation)

/> Models mostly fail to recognize (i.e., identifying
conflicting information) and resolve (i.e., reaching
similar final decision to the human meta-reviewer)
conflicts in its meta-reviews (40 samples)
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