The VLDB Journal (2022) 31:1143-1168
https://doi.org/10.1007/500778-022-00747-z

SPECIAL ISSUE PAPER

®

Check for
updates

A benchmark and comprehensive survey on knowledge graph entity
alignment via representation learning

Rui Zhang'® - Bayu Distiawan Trisedya? - Miao Li2 - Yong Jiang' - Jianzhong Qi?

Received: 15 March 2021 / Revised: 17 January 2022 / Accepted: 26 March 2022 / Published online: 24 May 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

In the last few years, the interest in knowledge bases has grown exponentially in both the research community and the
industry due to their essential role in Al applications. Entity alignment is an important task for enriching knowledge bases.
This paper provides a comprehensive tutorial-type survey on representative entity alignment techniques that use the new
approach of representation learning. We present a framework for capturing the key characteristics of these techniques,
propose a benchmark addressing the limitation of existing benchmark datasets, and conduct extensive experiments using our
benchmark. The framework gives a clear picture of how various techniques work. The experiments yield important results
about the empirical performance of the techniques and how various factors affect the performance. One important observation
not stressed by previous work is that techniques making good use of attribute triples and relation predicates as features stand
out as winners. We are also the first to investigate the question of how to perform entity alignments on large-scale knowledge
graphs such as the full Wikidata and Freebase (in Experiment 5).

Keywords Knowledge graph - Entity alignment - Knowledge graph alignment - Knowledge base - Representation learning -
Deep learning - Embedding - Graph neural networks - Graph convolutional networks

1 Introduction

Knowledge bases are a technology used to store complex
structured and unstructured information, typically facts or
knowledge. A knowledge graph (KG), which is a knowledge
base modeled by a graph structure or topology, is the most
popular form of knowledge bases and has almost become a
synonym of knowledge base today. There have been contin-

< Rui Zhang
rayteam @yeah.net
https://ruizhang.info/

Bayu Distiawan Trisedya
bayu.trisedya@unimelb.edu.au

Miao Li
miao4 @student.unimelb.edu.au

Yong Jiang
jlangy @mail.sz.tsinghua.edu.cn

Jianzhong Qi
jianzhong.qi @unimelb.edu.au

Tsinghua Shenzhen International Graduate School, Tsinghua
University, Shenzhen, China

2 The University of Melbourne, Parkville, Australia

uous research and development on KGs for several decades
due to their significance in systems that involve reasoning
based on knowledge and facts. Example KGs include open-
source ones such as DBpedia [1], Freebase [3], YAGO [19],
as well as proprietary ones such as those developed by Google
[11] and Microsoft [13]. In the last few years, there has been
an explosive growth of interest in KGs in both the research
community and the industry due to their essential role in
Al applications such as natural language processing (includ-
ing dialogue systems/chatbots, question answering sentence
generation, etc.) [61,71,74,75], search engines [23], recom-
mendation systems [79], and information extraction [12,52].

One of the most important tasks for KGs is entity align-
ment (EA), which aims to identify entities from different
KGs that represent the same real-world entity. EA enables
enrichment of a KG from another complementary one, hence
improving the quality and coverage of the KG, which is
critical for downstream applications. Different KGs may be
created via different sources and methods, so even entities
representing the same real-world entity may be denoted dif-
ferently in different KGs, and it is challenging to identify all
such aligned entities accurately. Figure 1 shows a toy exam-
ple of EA ontwo KGs G and G; (each in a dashed-line rectan-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-022-00747-z&domain=pdf
http://orcid.org/0000-0002-8132-6250

R.Zhang et al.

(o |

i country i

L

Q36687 || dop:Victoria

.
\

237,659 ‘
km?z |

1 July ‘
1851

Daniel
| Andrew
' G Wlkldata

Fig.1 Anexample of EA

gle), which are tiny subsets from two real publicly available
KGs, Wikidata and DBpedia, respectively. The rounded
rectangles represent entities and the rectangles represent
attribute values. An arrow between rounded rectangles indi-
cates a relation predicate, which forms a relation triple, e.g.,
(dbp:Victoria, country, dbp:Australia).An
arrow between a
rounded rectangle and a rectangle indicates an attribute predi-
cate, which forms an attribute triple,e.g.,(dbp: Victoria,
total area, “237,659 km?”). We can see that the
same real-world entity may have different surface forms in
the two KGs such as Q36687 v.s. dbp:Victoria. The
two KGs have complementary information about this entity:
G has information about its premier and G, has informa-
tion about its capital. The information about this entity can
be enriched if we can determine that Q36687 in G, refers
to the same real-world entity as dbp:Victoria in Gy,
i.e., Q36687 and dbp:Victoria are aligned entities.
EA between G and G is to find all the pairs of aligned
entities from the two KGs. In this example, there are two
pairs of aligned entities (036687, dbp:Victoria) and
(0408, dbp:Australia).

Traditional EA techniques use data mining or database
approaches, typically heuristics, to identify similar entities.
The accuracy of such approaches is limited, and heuristics is
difficult to generalize. In the past several years, a very large
number of studies on EA take the new approach of deep learn-
ing to learn effective vector representation (i.e., embeddings)
of the KG and then performing EA based on the learned
representation, which achieve much better accuracy. They
also have better generalizability as they rarely rely on ad hoc
heuristics. In the rest of this paper, by saying embedding-
based EA techniques or simply EA techniques, we refer
to those taking this new representation learning approach
rather than traditional approaches unless explicitly specified
otherwise. There are a few recent experimental studies aim-

@ Springer

ing at benchmarking EA techniques [49,81,82]. They have
high-level discussions on frameworks for embedding-based
techniques and summarize a good range of EA papers, but
their focus is on experimental comparison, but without self-
contained explanation on each technique. Moreover, the
frameworks discussed in those papers miss important mech-
anisms such as the use of semantic information of KGs
(e.g., strings of relation predicates, attribute predicates, and
attribute values), making those frameworks inapplicable to
many EA techniques, especially the latest ones. In compari-
son with the aforementioned studies, this paper fills the void
and make the following contributions:

e We provide a comprehensive tutorial-type survey to help
readers understand how each technique works with little
need to refer to individual full papers.

e We provide a comprehensive framework that accommo-
dates almost all the embedding-based EA techniques,
capturing their key components, strategies and charac-
teristics. We also comparatively analyze different tech-
niques in reference to the framework.

e We identify significant limitations of existing benchmark
datasets such as bijection, lack of name variety, and small
scale (detailed in Sect. 7.1). To address these limitations,
we devise a benchmark! that complement the existing
collection of benchmark datasets. Further, we conduct an
extensive experimental study comparing the performance
of the state-of-the-art techniques on our datasets.

The rest of the paper is organized as follows. Section 2
provides preliminaries, including problem formulation and
a summary on traditional EA techniques. We present our
framework for EA techniques in Sect. 3. Section 4 covers
KG structure embedding models, mainly translation-based
and graph-neural-network-based embedding, which are the
foundation of embedding-based EA techniques. Sections 5
and 6 survey the most representative EA techniques based on
the two major KG structure embeddings, respectively. Sec-
tion 7 discusses the limitations of existing datasets, presents
our proposed new datasets, and reports an extensive exper-
imental study using our datasets. Section 8 concludes the
paper and discusses future directions.

2 Preliminaries

Notation and Terminology Different notation and termi-
nology conventions have been used in different papers in the
literature. In this paper, we make a great effort at a standard
notation and terminology convention that provides clarity

I Our benchmark and all the code for our experiments are available
at https://github.com/ruizhang-ai/EA_for_KG.

https://github.com/ruizhang-ai/EA_for_KG

A benchmark and comprehensive survey on knowledge graph entity alignment via representation... 1145

Table 1 Frequently used symbols

Symbols Descriptions

ERAVT) A knowledge graph

& A set of entities

R A set of relation predicates

A A set of attribute predicates

v A set of attribute values which may be numeric
or literal

T A set of triples, which may consist of relation
triples 7, and attribute triples 7,

(h,r,t) A relation triple, which consists of a head entity
h, a tail entity #, the relation predicate r
between the entities

h,rt Embeddings of the head entity, relation predicate
and tail entity, respectively

(e,a,) An attribute triple, which consists of an entity e,
an attribute predicate a, and the attribute value v

e, a,v Embeddings of an entity, attribute predicate, and
attribute value, respectively

Suiple Triple score function

Salign Alignment score function

o A nonlinear activation function

S A set of pre-aligned entities from G| and G

S’ A set of corrupted entity alignments from G; and
G2

T A set of corrupted relation triples

|| Concatenation of two vectors

and is consistent with as many existing papers as possible.
The terminology will be seen throughout the paper as various
terms are introduced, and the frequently used symbols in our
notation convention are summarized in Table 1.

We use bold lowercase (e.g., e), bold uppercase (e.g., M),
and math calligraphy (e.g., £) to denote vectors, matrices,
and sets, respectively.

In the literature, a method proposed by a paper may have
been referred to by different terms such as model, approach,
technique, algorithm, method, etc.; we primarily use the term
technique in this paper, while other terms might be used when
the semantics are clear.

2.1 Problem formulation

We first introduce some notation. A KG denoted as G =
(E,R, A, V,T), consisting of a set of entities £, a set
of relation predicates R, a set of attribute predicates .4,
and a set of attribute values V), represents knowledge in
the form of a set of triples 7. There are two types of
triples, relation triples (denoted by 7,) in the form of
(h, r,t) and attribute triples (denoted by 7,) in the form
of (e,a,v); T = 7, U7,. A relation triple (h, r,t) indi-

cates a relation predicate r between two entities, a head
entity 4 and a tail entity ¢, where h,t € £ and r € R.
Take a triple in Fig. 1 as an example: (dbp:Victoria,
country, dbp:Australia). Here, dbp:Victoria.
and dbp:Australia are the head entity and tail entity,
respectively, and county is the relation predicate. An
attribute triple (e, a, v) indicates that an entity e € £ has
the attribute value of v € V for the attribute (predicate) a €
A. For example, in (dbp:Victoria, total_area,
237,659 kmz”), total_areais the attribute predicate
and 237,659 km?” is the attribute value.
The problem of EA is formulated as follows.

Definition 1 (Entity Alignment (EA)) Given two KGs G| =
LR, ALVL T and G = (&, Ra, A2, V2, Do), EA
aims to identify every pair of entities (e, €3),e1 € &1, €2 €
&>, where e and e; represent the same real-world entity (i.e.,
e1 and e are aligned entities). O

2.2 Related problems and traditional techniques

Related Problems There have been research on various
problems similar to EA on KGs.

Both sources structured. Entity matching [39,55], object
identification [50], and record linkage [14] aim to align enti-
ties from two different relational databases, where both data
sources are well structured. Solutions for these problems
mostly find database records that are similar in terms of
contents.

One source semi-structured and the other unstructured.
Entity resolution [2] and entity linking [26] aim to match
entity mentions from natural sentences, which are unstruc-
tured, to the corresponding entities in a KG, which is
semi-structured. A KG is semi-structured because it consists
of a graph (structured), and attributes and predicates, which
are in the form of natural language or other un-predefined
types (unstructured). Solutions for these problems mostly
find database records that have similar contents to named
entities recognized from natural sentences.

In comparison, EA on KGs aligns entities from two dif-
ferent KGs, both of which are semi-structured.

Traditional Techniques for EA Among traditional tech-
niques for EA on KGs, some have focused on improving
the effectiveness of the matching of entities via different
entity similarity measures. For example, RDF-AI [15] uses
fuzzy string matching based on sequence alignment, word
relation, and taxonomic similarity. SILK [22] provides the
Link Specification Language, which allows users to spec-
ify the similarity measures for comparing certain attributes.
LD-Mapper [41] combines string similarity and entity near-
est neighbors. PARIS [44] includes schema matching (e.g.,
classes and sub-classes of entities) to compute the entity sim-
ilarity. Some other traditional EA techniques focus on the

@ Springer

1146

R.Zhang et al.

efficiency of entity matching, e.g., LIMES [34] uses cluster-
ing to reduce the amount of similarity computation.

Traditional EA techniques, as exemplified above, usually
use data mining or database approaches, typically heuristics,
to identify similar entities. It is difficult for them to achieve
high accuracy and to generalize.

3 Generic framework of embedding-based
EA

We provide a generic framework for embedding-based EA
techniques to capture key components and strategies in Fig. 2.
The components drawn in dashed lines are optional. The
approach of embedding-based EA typically consists of three
components, an embedding module, an alignment module,
and an inference module.

The embedding module and the alignment module may be
trained alternatively or jointly, and these two together com-
pose the training modules for EA.

Embedding module The embedding module aims to learn
(typically low-dimensional) vector representations, i.e.,
embeddings of entities. There are four types of raw infor-
mation that may be taken as input features to the embedding
module: KG structure (in the form of relation triples in the
raw KG data), relation predicates, attribute predicates and
attribute values (attribute predicates and attribute values are
grouped into one component “Attributes” in Fig. 2 and the

<" Input features for ™,
alignment module

/ \
' 1
' i
Aroongoononaeo
— b A A
N . -
@ A \ R A
-2 F 5 PrBr2 B
S E I E A = R - S
wt 5] RS H T~ N =~ B
S S = I ST L - S T - SR
SE |25 8 S g 8 v '
= 5l 188! Pl S asEr 8
S| 2|53, = -t - :
QO o= = 1 [oy gt 'EOD: [=T ' '
= = 17} ' g. v B P = :3.'—", [= B '
E ! =
5% (o122 .:g.-,\“:.m:: '
[=P=} M TS I ! (o] I ' an,
£ < IR PLg B i g
- - I B R o S B > B -
= [S S H N =
' ' Vol O
' N Semmmt ~=r- l 7
' ' N \ ') P B!
U U IS G- beccelaaa-
Y v v it : : i
h | A 4 |4 1
'
. . '
Embedding module [€ —>| Alignment module '
interaction '
T l
'
' EA training modules :
! 1 :
i
' '
. !
___________ A S EA inference module [----*

/ Output: KG embeddings ,'I
,:' (entities, entity pairs, relation/'
/ predicates, attributes, etc)

Aligned entities

Fig. 2 Framework of embedding-based EA techniques. Dashed lines
indicate optional parts

@ Springer

5th column in Table 2). The embedding module may produce
as output the embeddings of entities, entity pairs, relation
predicates, attributes, etc.; we refer to the process of “encod-
ing” the input features into the targeted embeddings as KG
embedding. Among all the possible input features, the KG
structure is the most critical one. The machine learning model
for embedding KG structure, which we simply term as the
KG structure embedding model, serves as the skeleton of an
EA technique, and other types of information may be option-
ally added to the KG structure embedding model to create a
more sophisticated KG embedding. Note that the other types
of information (i.e., relation predicates, attribute predicates,
and attribute values) are usually in the form of strings and
hence contain rich semantic information, which may greatly
benefit EA as we will see.

The KG structure embedding model mostly follows
one of two paradigms, translation-based and GNN-based.
Translation-based models mainly utilize relation triples
while GNN-based models mainly utilize the neighborhood
of entities. How relation triples are utilized in the translation-
based models and how the neighborhood of entities is utilized
in the GNN-based models are detailed in Sects. 4.1 and 4.2,
respectively.

Relation predicates and attribute predicates may be
encoded as categorical values or strings. Attribute values are
usually encoded as strings.

Alignment module The embedding module computes the
embeddings of each KG separately, which makes the embed-
dings of G| and G, fall into different vector spaces. The
alignment module aims to unify the embeddings of the two
KGs into the same vector space so that aligned entities
can be identified, which is a major challenge for EA. EA
techniques usually make use of a set of manually aligned
entities, relation predicates, or attributes, called seed align-
ments, as input features to train the alignment module. The
most common approach is using a set of seed entity align-
ments S = {(e1, e2)|e1 € &1, ex € £, €1 = e3}. These seeds
consist of pairs of entities (e1, e2), where e is an entity in £
and e is an entity in &. The seeds are used to compute a loss
function for the embedding module to learn a unified vector
space. A typical example of how the loss function may be
defined is as follows:

=y ¥

(e1,€2)€S (¢ ,eh)eS’

xmax (0, [y + fuign(e1, €2) = fuign(e}, €)]) (D

where y > 0 is a margin hyperparameter. The above loss
function is designed to minimize the distances between pairs
of entities in the seed entity alignments S and maximize the
distances between the pairs of entities (¢/, ¢,) in corrupted
seed alignments S’, which are negative samples obtained by

A benchmark and comprehensive survey on knowledge graph entity alignment via representation... 1147

replacing an entity in the seed alignments with a random
entity. Here, the distance between a pair of entities is com-
puted by faiign, which we call the alignment score function. It
indicates how (dis)similar two entities are; the more the two
entities are aligned (i.e., similar to each other), the smaller
falign is. The most commonly used alignment score functions
are cosine similarity, L1 norm (i.e., Manhattan distance), and
L, norm (i.e., Euclidean distance). We do not observe large
difference in performance in our experiments when swapping
these metrics (also note that L, norm and cosine similarity are
equivalent). Some techniques customize the alignment score
function to serve more sophisticated optimization goals such
as Wang et al. [59]. The function max(0,) ensures that any
negative margin loss values are not added to the total loss.
Some techniques may exploit other types of seed alignments,
including seed relation predicate alignments, seed attribute
predicate alignments and seed attribute value alignments
(seed attribute predicate alignments and seed attribute value
alignments are grouped into one component “Seed attribute
alignment” in Fig. 2). Relation predicate and attribute pred-
icate alignment are needed because the same predicate may
be stored in different surface forms, e.g., one KG has the
attribute predicate birth_date while the other KG has the
attribute predicate date_of_birth. The need for attribute
value alignment is similar.

Note that like the embedding module, the alignment
module may also use the four types of raw information
(KG structure, relation predicates, attribute predicates, and
attribute values) besides seed alignments as features. Some
EA techniques may use an unsupervised method to train the
alignment modul, e.g., AttrE [51] exploits attribute triples
to learn a unified attribute vector space, so manually labeled
seed relation predicate/attribute alignments are not necessity,
and we put parenthesis on the word “seed” for relation pred-
icate alignments and attribute alignments in Fig. 2. At least
one input feature is required to train the alignment module,
though.

In summary, the input features to the alignment mod-
ule may be raw information such as KG structure, relation
predicates, and attributes, as well as entity/relation/attribute
alignments which may be created manually or automatically.

Bootstrapping is a common strategy when limited seed
alignments are available. The idea is that those aligned
entity/attribute/relation produced by the EA inference mod-
ule are fed back to the alignment module as training data,
and this process may be iterated multiple times. Note that
creating seeds takes human effort, which is expensive. Boot-
strapping may help reduce human effort but is at the cost
of much more computation since it iterates training multi-
ple times. From the summary in Table 2, we can see that
bootstrapping is very popular among the translation-based
techniques but not among the GNN-based techniques. Eight

out of 15 translation-based techniques exploit bootstrap-
ping, but only one out of 17 GNN-based technique exploits
bootstrapping. The reason is that the GNN-based tech-
nique is better at capturing the relationships between entities
in a graph compare to the translation-based techniques.
Thus, the translation-based techniques use bootstrapping to
improve their capability in capturing the entity relationships.
However, we believe that bootstrapping is also helpful for
GNN-based techniques, which may be investigated in future
work.

EA Inference module This module aims to predict whether
a pair of entities from G; and G, are aligned. In practice,
almost all the techniques use the following alternative aim:
given a target entity e; from Gy, the EA inference module
aims to predict an entity e; from G, that is aligned to e1; we
may call ej (e2) the aligned entity or the counterpart entity
of e> (e1). The aligned entity may not exist if a similarity
threshold is applied.

The most common approach for the inference module is
nearest neighbor search (NNS), which finds the entity from
G that is the most similar to e based on their embeddings
obtained from the EA training module. Commonly used simi-
larity measures include cosine similarity, Euclidean distance,
and Manhattan distance. When describing individual tech-
niques later, we may omit the inference module if it uses this
most common approach of NNS.

The NNS inference approach may incur many-fo-one
alignment, where two different entities from a KG are aligned
with the same entity from the other KG. To avoid it, some
studies impose a one-to-one constraint.

Discussions Table 2 summarizes representative EA tech-
niques according to six key characteristics (the first row): KG
structure embedding, KG structure, the way attributes used as
input features, the way relation predicates used as input fea-
tures, input features for the alignment module, and whether
bootstrapping is used. Column 2 captures the paradigm of
the embedding module. Columns 3 to 5 describe all the raw
input features. Column 6 describes the input features of the
alignment module. Early techniques make use of fewer types
of information. For example, MTransE [7] only uses KG
structure as features for the embedding module and seed
relation triple alignments for the alignment module. Newer
techniques such as AttrE [51] and MultiKE [80] use all the
four types of raw information as input features for training
modules as well as various types of features for the alignment
module. As our experimental study shows (cf. Table 5), tech-
niques using more types of input features tend to have better
performance.

Some studies especially early ones regard whether a tech-
nique can perform EA on multilingual KGs or only on
monolingual KGs as an important distinction. We argue
that this is not an essential characteristic of EA techniques.

@ Springer

R.Zhang et al.

1148

uondrrosap Anuy ‘onfea

Jreorpaid

- syjuowugITe AINUL pasg JInqgLnje jo spiom-jo-seq uone[al jo spiom-jo-geq pooyI0qy3IoN NDO (6107) NVINH
ordin
- siuewuSIe Ainue paag uonear se ofdun AnqLNy - pooyIoqysIoN NOO (8100) USTV-NOD
sjuowuIe
onjeA Anquje pas
‘syuawuSipe 9eorpaid
dnqunIe/UONE[I PIIS onjeA dnquye
% ‘sjudwIUSIe AJNUS Podg Jo s3urppaquio pIop - opduy, qHSUBLL PaYIPOJN (0200) V3IIer
9jeorpaid/enyea nqnie
2 syuowuSITe A)uo paas Jo aouanbas 19108IRYD) - orduy, FSuely, (0202) AVSIOD
Qwreu
syuowugife yeorpaid Amug ‘onfea/aresrpaid
AnquyIe/uone[aY nquye jo Suing ‘ordm
- ‘sjuowugIe AINud pasg uoneas se o[dLn INqLY 9reorpaid uonejas jo uing orduy, qHASUeIL, PAYIPOIN (6107) TBININ
Jreorpaid
uorne[al/amnquLe Jo 9jeorpaxd anqrnie jo
Sumg ‘onyea Anquye jo Sumg ‘onfea Anquye Jo
Qouanbas 19y0vIRy)) ‘O[dIN Qouanbas 1ay0rIRy)) o[dIN
- uonelar se o[d aInquNy uonear se 9[dy Anquny Jeorpaxd uonefar Jo Summg orduy, FSuely, (6700) AWMV
- siuewuSIe Ainue paag - - opduy, qHSUBLL PaYIpOJN (6100) TV
sjuowuIfe
eorpaid uone[ar paag
- syuowruSIfe AyNud peog - - opdug, gsuel, (6100) 61XS
2 syjuowugIfe AINUL paog - - orduy, a3pgsuely, (6107) 23pHsuely,
» sjuowusIe A1ud paag - - PpooyIoquSIeN qHASURIL, PAYIPOIN (6102) VAVN
A’ siuewuSIe Ainue paag - - ordu, gsuelf, (61027) V4S
- syuowrugie Ainue paag - - ordu, gsuelf, (6107) VAIO
A syjuewuSITe AINUL paag uondrrosep Anug - ordg, gsuer], (81027) HOO@
% siuewuSIe Ainue paag - - opduy, qHSUBLL PIYIPOIN (8100) valoog
sjuowugfe
o1din uonear poeg
- ‘syuowruife ANuo paog anfea gnque jo ad£) eleq - orduy, qHSue1], p3YIPON (L102) AdVI
syjuowugIe
eo1paid uonear paas
2 ‘sjuowruife AJNuo paas - - yed gsuelld (L107) gsue1ldl
syjuowugIe
eo1paid uonear paas
- ‘sjuowuS e AINU paog - - orduay, gsuer], (L107) dSueiL N
o[npowr SoIn)es)
o Juawudie 103 sarme) ndug sarmyedy ndur se saInquUNy ndur se soyeorpaid uoneoy aImonns O Surppaquua 21monns H| anbruyoay,

sonbruyo9) vy paseq-3uippequio Jo Arewrwuns y g ajqel

pringer

Qs

1149

A benchmark and comprehensive survey on knowledge graph entity alignment via representation...

oo yoea woly 1ojy1p Aewr s1oded juarogip ur pasodord FsuelL, pAYIPOIAL,q
‘Surddensjooq sasn anbruyod) oy Joy1oYMm SIRIIPUI g, UWN[0D Y],

21qvonddp jou sueawr

:lww

syuowugIfe AINuo paog

syjuswugIe AINUa pasg

syjuowugIfe AINUd pasg

syjuowugIfe AINUL pasg
syjuowugITe AINUL pasg
syjuowugITe AINUL pasg
syjuowugITe AINUL pasg
syjuowugITe AINUL pasg
syjuowu3ITe AINUL pasg

sjuowuge
9eorpaid uonear pass
‘syuouusITe AINUL paog

sjuowu3Ife AU paas
sjuowu3Ife AU pads

sjuowuge

qreorpaid uoneoy
‘syjuowuIfe AJuo paes

sjuowugIfe

Jreorpaid uone[a1 paog
‘sjuowru3Ife AU pads

Qureu Aynug
‘anfeA anqgrme Jo Surng

sureu Anuyg

wreu Aynug
‘anfea 9ynqgre Jo Suing

Qwreu Anuyg

Qwreu Anuyg

Qwreu Ainug

sureu Anuyg

sureu Knuyg

sureu Anuyg

areorpaid
UoInE[al JO UONOAMJ

‘ojeorpaid uornerar jo Suing

pooyI0qu3IoN

pooyI0qu3IoN

pooYI0qySIoN

yed
pootI0qySIoN
pooyI0qySIoN
pooyI0qySIoN
pooyI0qySIoN
pootI0qySIoN
pooyIoqy3IoN

pooyIoqy3IoN
pooyI0qySIoN
pooyI0qySIoN

pooyI0qySIoN

pooyI0qySIoN

IVD

IVD

IVD

IVD

Hsuel] +1VD
NOD

NDOD

NDD
DDOVIANSRII0D
NOD

NOD
NOD
NNODdd

NOD

NOD-¥A

(0z00) vad

(0207) VAVIIN

(0207) NNOMY
(0202) 1PNV
(6102) DI

(0202) 0TSX

(0202) dSS

(0202) VAD

(0202) USIYNN-DD
(0202) NN

(6100) NNOOA
(6107) NNIND
(6100) NODAY

(6102) NODH

(6102) NOD-IAV

J[npow

juowugife 10j sanjeay nduy

samyeay Jndur se saINquUPy

saInjea)

ndur se sojesrpaid uoneoy

amionns Oy

Surppaquue aInonns Hf

anbruyoay,

penunuod go|qel

pringer

As

1150

R.Zhang et al.

The reason is that most recently proposed techniques make
use of the semantic information of KGs such as the strings
of relation predicates, attribute predicates, and attribute val-
ues (cf. Table 2), and we can perform automatic translation
on the semantic information into the target language so that
both KGs are in the same language, and then conduct EA on
monolingual KGs such as in JarKA [6]. Our experimental
study (Table 7) validates this.

4 KG structure embedding models

We review two paradigms of KG structure embedding, which
underlie embedding-based EA techniques.

4.1 Translation-based embedding models

The essence of translation-based embedding models is treat-
ing a relation in KGs as a “translation” in a vector space
between the head and the tail entities.

TransE [4] is the first translation-based embedding
model, which embeds both entities and relations into a uni-
fied (typically low-dimensional) vector space. The main idea
is that, if we can find a perfect suite of vector representations,
i.e., embeddings, of entities and relation predicates, then for
any relation triple (A, r,t), the corresponding embeddings
h, r and ¢ should satisfy the vector translation operation of
h +r = t. For example, the embedding of Victoria plus
the embedding of capital should equal the embedding
of Melbourne. In other words, if we define the following
function

Juiple(h, 7, 1) = ||k +r —]| @

then ideally this function should have the value of 0 for the
embeddings of all the true relation triples. Equation 2 is called
the triple score function, which measures the plausibility of a
relation triple (the smaller the function value, the more likely
(h, r,t) form a true relation triple). In reality, the embed-
dings of all the entities and relation predicates are unknown
and need to be learned. Further there may well not exist a
suite of embeddings such that fijple = O for all the relations.
Therefore, the aim of learning becomes finding a suite of
embeddings that minimize the sum of fy;ple for all the rela-
tions in a KG. To learn effectively, Bordes et al. [4] use the
strategy of negative sampling, i.e., for any (h’, ', t") that do
not form a true relation triple, fuiple(h', ', t') should be a
large value, e.g., (Victoria, capital, dog); these neg-
ative samples are called corrupted relation triples and are
generated from true triples with either the head or the tail
entity being replaced by a random entity. The learning pro-
cess usually randomly initialize all the embeddings and then

@ Springer

minimize a margin-loss-based objective function below via
gradient descent:

2

(h,r,0)eT, (W r.t")eT)

xmax (0, [y + fuipe(h, 7. 0) = fupreh's 7" 1]) 3)

C:

where y > 0 is a margin hyperparameter, 7, is the set of true
relation triples, and 7, is a set of corrupted relation triples.

After the seminal work of TransE, several variants of
translation-based KG structure embedding models are pro-
posed with improvements on the embedding space [20,58,
66,67] or on the triple score function [68].

Interested readers are referred to Wang et al. [57] and Ji
et al. [21] for surveys on KG embedding models.

4.2 GNN-based embedding models

Graph neural networks (GNNs) have yielded strong perfor-
mance on graph data analysis and gained immense popularity
[65]. There are two representative models, namely graph
convolutional networks (GCNs) [24], and graph attention
networks (GAT) [54], which will be detailed later. These
two models are frequently used in recent KG embedding and
EA studies because KGs are of graph structure by nature.
Unlike translation-based embedding models, which treats
each triple separately, GNN-based embedding models focus
on aggregating information from the neighborhood of entities
together with the graph structure to compute entity embed-
dings. The essence of GNN-based embedding models is
aggregating information from the neighborhood to a target
node according to rules of message passing [17], i.e., the
embedding information is propagated from neighbor entities
to the target entity through the edges. The optimization goal
of GNN-based embedding is to map entities with a simi-
lar neighborhood into embeddings close to each other in the
embedding space.

Graph Convolutional Networks (GCNs) [24] compute
a target node’s embedding as a low-dimensional vector (i.e.,
embedding) by aggregating the features of its neighbors in
addition to itself, following the rules of message passing in
graphs. Specifically, a GCN is a multi-layer GNN denoted
by a function f(X, A), where the inputs are feature vec-
tors of a graph’s nodes represented by a matrix X and the
graph’s adjacency matrix A. The element a;; € A indicates
the connectivity between nodes i and j and can be viewed as
the weight of the edge between the two nodes. The features
of the neighbors encoded as embeddings are passed on to
the target node weighted by the edge weights. This message
passing process is formulated as:

A benchmark and comprehensive survey on knowledge graph entity alignment via representation... 1151

0+ — o <l~)z;u~) 2 Q(I)W(1)> @

where W is a learnable weight matrix in the /th layer,

A = A + I is the adjacency matrix with self-connections,

D is a diagonal matrix of node degrees (D;; = Zj Aij),
1

1

D 2AD 7 is the normalization of A by node degrees, and
QUH) is the output of the /th layer, which consists of the
node embeddings computed by the GCN after / iterations.
The input of the /th layer is Q(l), which in turn is the output
of the previous layer. The node embeddings are usually ini-
tialized by the input matrix, i.e., Q(O) = X, and the final
layer produces the final node embeddings learned by the
GCN. Usually A is determined by the connectivity of the
graph where 1 means connected and 0 means not; A may also
be determined by heuristics such as the similarity between
nodes and the values may be between 0 and 1. Once A is
determined, it remains unchanged during the training which
means that it is not learned.

Graph Attention Networks (GAT) [54] aggregate infor-
mation from neighborhood with the attention mechanism
[53] and allows for focusing on the most relevant neighbors.
Conceptually, GAT is similar to GCN in the sense that they
both perform message passing to compute the node embed-
dings; the main difference is that the edge weights of GCNs
(i.e., the adjacency matrix) are not learned but those of GAT
(i.e., the attentions) are. Specifically, GAT is also a multi-
layer GNN denoted by a function f(X) and the input X is
the feature vectors of nodes. The output of the /th layer is
computed based on the attention mechanism as follows:

I+1
gi V=0 | X aWay, 5)
jeN;

where W is a learnable weight matrix; Q(ZH) = qYH),

qgﬂ), e, q,(llH) is the output of the /th layer; n is the num-
(I+1)

ber of the nodes; ¢; is the node embedding of node i
computed by the GAT after [iterations. The input of the /th
layer is @, which in turn is the output of the previous layer
using Q(l_l) as input. The node embeddings are usually ini-
tialized by the input matrix, i.e., Q O =x , and the final layer
produces the final node embeddings learned by the GAT. The
attention weight «;; is computed by a softmax normalization

over attention coefficients:

exp(cij)

T on explein) 6
>_keN; €Xp(cik) (©)

Ol,‘j

where A; indicates the set of nodes in the neighborhood of
nodei. The attention coefficient ¢;; is the correlation between
nodes, which is learned as follows:

cij = LEAKYRELU (w” [Wq” | Wq)) (7

where the parameter vector w is used to transform the con-
catenation of two node embeddingss into a scalar.
GAT applies multi-head attention as follows:

(I+1) K k ywk
9 = ”k=10< > W ;) ®)
JeN;

where the output is the concatenation of K independent self-
attentions with different normalized attention weight afj and

weight matrix W*.

Variants The two representative GNN models, GCN and
GAT, have served as the foundation for more sophisticated
models designed for various applications. Alternative sym-
metric matrices have been proposed to replace the adjacency
matrix of GCNs (e.g., AGCN [77] and DGCN ([87]), and
various ways of computing attention have been proposed for
GAT. A comprehensive discussion on GNNs is given by Wu
et al. [65].

5 Translation-based EA techniques

This section reviews representative translation-based EA
techniques. We focus on the two key components, the embed-
ding module determined by firiple, and the alignment module
determined by fajign. The KG embedding in translation-based
EA techniques either use TransE [4] directly or its variants,
which encodes KG structure by relation triples, paths or
neighborhood. We review the techniques that only use KG
structure for their KG embedding in Sect. 5.1 and the tech-
niques that exploit other types of information, i.e., relation
predicates and attributes for their KG embedding in Sect. 5.2.

5.1 Techniques that only use KG structure

MTransE [7] is the first translation-based model for
embedding-based EA. Its embedding module uses TransE
to embed the entities and relation predicates from each KG
into a different embedding space with part of the loss func-
tion being the same as Eq. 3. To make these embeddings all
fall into a unified space, the alignment module learns cross-
KG transitions by minimizing the sum of the alignment score
function for all the seed relation triple alignments as follows:

L= Z Satign(tr1, tr2) 9

(tr1,tr)eS;
where S; is a set of seed relation triple alignments from the G;

and G, (essentially the combination of seed entity alignments
and seed relation predicate alignments), and fajign (71, 72)

@ Springer

1152

R.Zhang et al.

is the alignment score function. Different from the align-
ment score function described in Sect. 3, which computes
the (dis)similarity of two entities, here the alignment score
function computes the (dis)similarity of two relation triples,
tri = (hy,r1,t1) € Gy and trp = (ho, 1, 1) € Gy. To
compute the alignment score, MTransE has three strategies
to construct cross-KG transitions including distance-based
axis calibration, transformation vectors, and linear trans-
formations. According to their experimental study, MTransE
with the linear transformation strategy has the best perfor-
mance. This strategy learns a linear transformation between
the entity embeddings of G; and G, with the following align-
ment score function:

Jatign(tr1, tr2) = ||M{;hy — ho|| + [|[M;r1 — 12|
+ 1Mt — b)) (10)

where M fj and M} ; are linear transformations on entity
embeddings and relation predicate embeddings, respectively.
Minimizing faign Will minimize the distance between the
transformed entities/relation predicates from G; and those
from G,, making the embeddings of the two KGs fall into the
same vector space.

The inference module of MTransE uses NNS.

IPTransE [84] first learns the embeddings of G; and
G, separately in the embedding module with an extension
of TransE named PTransE [29]). Different from TransE,
PTransE can model indirectly connected entities by consid-
ering the path between them, which is composed of relation
predicates that form a translation between them. The align-
ment module of IPTransE learns transitions between G
and G, with three different strategies based on seed entity
alignments: translation-based, linear transformation, and
parameter sharing.

The translation-based strategy adapts the idea of “trans-
lation” to the cross-KG context and treats alignment as a
special relation predicate r©1~&) petween two sets of enti-
ties, £ and & from Gy and Gy, respectively. The alignment
score function is defined as:

fatign(e1, €2) = |ley + r&178) ¢y (11)

where e] and e, are the embeddings of two entities e; € &
and ep € &. The objective function is a weighted sum of the
loss function of PTranE and fy1;gn On seed entity alignments.

The linear transformation strategy learns a transformation
matrix M1~ which makes two aligned entities close to
each other, with the alignment score function below:

faign(e1, €2) = ||ME e —)| (12)

The objective function is a weighted sum of the loss function
of PTranE and faign on seed entity alignments.

@ Springer

The parameter sharing strategy forces e; = e», which
indicates that a pair of aligned entities share the same embed-
ding, and hence applying fajign On two aligned seed entities
always gives 0. The objective function reduces to the loss
function of PTranE. The parameter sharing strategy shows
the best joint embedding learning performance among the
three strategies.

In the training process, IPTransE adopts bootstrapping and
has two strategies to add newly aligned entities to the seeds:
a hard strategy and a soft strategy. Other techniques usu-
ally apply the hard strategy where newly-aligned entities are
directly appended into the set of seed alignments, which may
suffer from error propagation. In the soft strategy, reliabil-
ity scores are assigned to newly aligned entities to mitigate
error propagation, which correspond to the embedding dis-
tance between aligned entities. This may be implemented as
a loss item added to the objective function.

BootEA [46] models EA as a one-to-one classification
problem and the counterpart of an entity is regarded as the
label of the entity. It iteratively learns the classifier via boot-
strapping from both labeled data (seed entity alignments) and
unlabeled data (predicated aligned entities). The embedding
module adapts the triple score function of TransE fiipie (-) as
defined in Eq. 2 by applying fiiple(-) on not only true triples
from G; and Gy, but also all the “generated triples” obtained
as follows: when an entity in a true triple, either head or tail,
exists in the current set of aligned entities S, replacing that
entity by its aligned one in S generates a new triple. Note
that S grows gradually with the iterations of bootstrapping.
Specifically, the loss function for the embedding module is:

L, = Z max (07 [ftriple(hs rot) — Vl])
(h,r,t)eZ,
+ Bi Z max (O, [)/2 — Jriple (h/» r t/)]) (13)
W, t"heT!

where 7, includes all the true triples in G; and G;, as well
as all the generated triples described above; 7,/ contains all
the corrupted triples generated by uniform negative sampling
[4]. Note that this loss function is the sum of two parts in
comparison to Eq. 3, which is called limit-based loss function
proposed by Zhou et al. [83]; it minimizes both fipie (4, 7, 1)
and fuiple(h', ', t') by using two hyperparameters y; and y»
to control them directly.

The alignment module of BootEA is a one-to-one classi-
fier, which is different from the aligning method in Eq. 1
and uses a cross-entropy loss between the distribution of the
entities in G versus the distribution of the predicted class
(i.e., the aligned entity) from G;. All the pairs of entities in
S are plugged into the following equation to compute the
cross-entropy loss:

A benchmark and comprehensive survey on knowledge graph entity alignment via representation... 1153

Lo=—)Y ¢ele2)logm(er] er) (14)

e1€€1 erebr

where ¢,, (e2) is a function that computes the labeling proba-
bility of e;. If e is labeled as e, the labeling distribution ¢,,
has all of its mass concentrated on ey, i.e., ¢, (e2) = 1. If ¢;
is unlabeled, ¢,, is a uniform distribution; 7 is the classifier
that predicts the aligned entity from & given e € &;.

The overall objective function of BootEA £ = L.+ 82 L,,
where $, is a balancing hyperparameter.

NAEA [85] also formulates EA as a one-to-one clas-
sification problem but combines the translation-based and
the GAT-based paradigms. Specifically, NAEA embeds
neighbor-level information in addition to relation-level infor-
mation. The neighbor-level information is embedded by
aggregating the embeddings of the neighborhood with the
attention mechanism as described in the GAT part of
Sect. 4.2. Denote the neighbor-level representation of an
entity e and the neighbor-level representation of a relation
predicate r as Ne(e) and Nr(r), respectively. Then, based
on the “translation” idea, the triple score function for the
neighbor-level embedding is fuiple(h, 7, 1) = | Ne(h) +
Nr(r) — Ne(?)||. NAEA also uses the limit-based loss trick
[83] and gets the following loss function for the neighbor-
level embedding.

n- Y Y%

(h,r.0)€Ty (W ¥ 1)eT!
x max ([fuiple(h, 7, 1) + ¥1 — fuiple (A', 7', 1)1, 0)

+ B Z max ([ftriple(h» r.t) —)/2]) 0) (15)
(h,r,t)eT,

The relation-level information is embedded using TransE.
The overall loss function for the embedding module is £, =
BaL1 + (1 — B2) Lo, where L is the same as Eq. 3 and S, is
a hyperparameter.

The alignment module of NAEA is similar to BootEA,
which uses a cross-entropy loss between the distribution of
the entities in G and the distribution of the predicted class
from G, as follows.

Lai== >3 ¢e(e)logm (e | e) (16)

e,»eé'] ejeé‘g

where ¢, (e2) is the same as that in BootEA. The classifier
b4 (ej | ei) is defined as follows:

T (ej | ei) = B3 o(sim (Ne (e;),Ne (ej)))
+ (1 —B3) of(sim (e, e;)) (17)

where sim(-) is the cosine similarity and B3 is a balancing
hyperparameter.

TransEdge [47] addresses TransE’s deficiency that its
relation predicate embeddings are entity-independent, but
in reality a relation predicate embedding should depend on
its context, i.e., the head and tail entities. For example, the
relation predicate director has different meanings in two
different relation triples, (Steve Jobs, director,
Apple) and (James Cameron, director,
Avatar).

To address this issue, TransEdge proposes an edge-centric
translational embedding model which regards the contextu-
alized embedding of the relation predicate as the translation
from the head entity to the tail entity. It contextualizes rela-
tion predicates as different edge embeddings, where the
context of a relation predicate is specified by its head and
tail entities. This is achieved by a triple score function as
follows:

Juiple(h, r 1) = ||k + Y (he, te,r) — ¢ (18)

where V¥ (h., t., r) is the contextualized embeddings of a
relation predicate, called the edge embedding.

The paper introduces two interaction embeddings h. and
t. for encoding the head and tail entities’ participation in
the computation of the edge embeddings, respectively. The
edge embeddings may be computed via two strategies, con-
text compression and context projection. The first strategy,
context compression, adopts multilayer perceptrons (MLPs)
to compress the embeddings of the head entity, tail entity and
the relation predicate as follows:

Y (he, te, r) = MLP (MLP([h.|r]) + MLP([t|r])) (19)

The other strategy, context projection, projects the rela-
tion embedding onto the hyperplane of the head and the tail
entities, and compute the edge embedding as:

Ylhe te,r) =1 —Wg ,rWa (20)

where W = MLP([h.||t.]) is the normal vector of the
hyperplane.

The alignment module of TransEdge uses a parameter
sharing strategy to unify two different KGs, i.e., it forces
a pair of aligned entities in the seed entity alignments to
have the same embedding. TransEdge uses bootstrapping but
newly aligned entities in each iteration are not processed with
parameter sharing. To make these newly aligned entities close
in the embedding space, a loss is added based on the embed-
ding distance on the set D of newly aligned entities:

L=) le—e 1)

(e1,e2)€D

@ Springer

1154

R.Zhang et al.

Other techniques that only use KG structure OTEA [38]
adapts the optimal transport theory for EA. SEA [37] makes
use of unlabeled data (unaligned entities) by adopting a cycle
consistency restriction in the loss function. SX19 [43] models
multi-mappings (i.e., many-to-many, one-to-many, or many-
to-one) relations with a newly designed score function based
on multiplication and complex vector space. AKE [28] first
learns entity embeddings via TransE and then learns the uni-
fied vector space for G; and G; in an adversarial learning
framework.

5.2 Techniques that exploit relation predicates
and attributes

JAPE [45] makes use of attribute triples, albeit limited to
only data types of attribute values (e.g., integers or strings),
in addition to relation triples.

The embedding module of JAPE has two components:
structure embedding and attribute embedding. The struc-
ture embeddings are obtained using TransE on G; and G,
separately, producing two structure-based entity embedding
matrices E sl and E f, respectively. The attribute embeddings
are obtained by modeling the attribute co-occurrence within
a same entity or across a pair of aligned seed entities. Specif-
ically, a word embedding (Skip-gram [33] in their paper)
is computed for every data type of attribute values based
on the attribute co-occurrence as described above. Then the
obtained word embedding for the data type is regarded as
the embedding of the attribute itself. Then we can form an
attribute-based entity embedding matrix consisting of the
averaged attribute embeddings of all the entities, denoted
as E ; for each KG, respectively, where i = 1, 2.

After obtaining both the structure and attribute-based
entity embedding matrices, JAPE first computes cross-KG
similarity S 12 and inner-KG similarity for each KG (i.e.,
S' and S?) based on the attribute-based entity embedding
matrices:

1,2 12T, 1 11T, 2 2527
S'*=E\E2; S'=ElE, ; S*=E.E. (22)

Then, it refines the embeddings by integrating the structural
information with the following loss function.

2
£=|El- "2

F

2
+8 (HE} - s'El| + |E2 - 52

2
F) (23)

where f is a hyperparameter that balances the importance of
cross-KG similarity and inner-KG similarities.

KDCoE [8] builds on top of MTransE by shifting the
entity embeddings by the embeddings of entity descriptions
(i.e., literal descriptions for entities in KGs), which are treated

@ Springer

as a type of special attribute triples where the attribute value
is a literal description for the entity.

AttrE [51] is the first technique that makes use of attribute
values. Moreover, it is the only EA technique that needs no
seed alignments.

The embedding module of AttrE uses TransE to learn
KG structure embeddings for the entities from G; and G;.
The main novelty of AttrE is to encode the semantics of the
attribute values and three methods for encoding them are
proposed: averaged character embedding, aggregated char-
acter embedding by LSTM, and aggregated n-gram character
embedding. The aggregated n-gram character embedding has
the best performance as reported in their paper, which uses
the sum of n-grams of varying lengths to encode attribute
values.

Another interesting idea proposed in AttrE, inspired by
the “translation” idea in Eq. 2, is interpreting attribute triples
(in addition to relation triples) as translating operation to
learn the attribute embeddings as follows:

Juiple(e, a,v) = lle +a — (V)| (24)

where 7 (v) is a function implementing one of the aforemen-
tioned encoding methods on the attribute value v. Thereby
the same triple score function can be used to compute the
plausibility of both relation and attribute triples uniformly. It
helps shift the KG structure embeddings of G and G into the
same vector space by minimizing the following loss function:

Li= Y [1—sim (e e)] (25)

ecE1UE

where sim (e, e.) is the cosine similarity between the struc-
ture embedding es; and the attribute embedding e. of an
entity e.

Besides making use of relation triples and attribute val-
ues, AttrE also aligns predicates (including both relation and
attribute predicates) by exploiting the string similarity in the
naming conventions of the predicates.

Finally, the inference module of AttrE predicts the aligned
entity by computing the cosine similarity between the shifted
structure embeddings.

MultiKE [80] uses multi-view learning on various kinds
of features. The embedding module of MultiKE divides the
features of KGs into three subsets called views: name view,
relation view, and attribute view. Entity embeddings are
learned for each view and then combined.

In the name view, an entity embedding is obtained from
concatenating pre-trained word/character embeddings of the
tokens in the entity name.

In the relation view, TransE is adopted to produce embed-
dings but with a logistic loss function:

A benchmark and comprehensive survey on knowledge graph entity alignment via representation... 1155

L=y

(h.r)eT,UT)

log (1 +exp (£ (h, 7, 0) fuiple (. 7, t)))
(26)

where ¢(h, r,t) is 1 if (h, r, t) is a true triple, and -1 other-
wise; fuiple (1, 7, t) is the same as in TransE.

In the attribute view, an attribute-value matrix [a||v] is first
formed by the concatenation of the embeddings of attribute
predicates and their values, and then the triple score function
is defined as the head entity minus the result of a convo-
lution neural network (CNN) on the attribute-value matrix,
formally:

Juiple(e, a, v) = [le — CNN([a|[v])]| 27)

This triple score function is then used to obtain the embed-
dings in the attribute view by minimizing the following
objective function:

Lo= Y log(l+exp(fisiple(e. a,v))) (28)
(e,a,v)eT,

where 7, is a set of true attribute triples.

Next, the alignment module unifies the embedding spaces
of the two KGs into the same vector space in each of the
views. In the name view, the two KGs both use the same
embedding scheme, i.e., pre-trained word embedding, so
their embedding spaces are already unified. In the relation
view and the attribute view, MultiKE performs the so-called
cross-KG entity/relation/attribute identity inference to unify
the embedding spaces as follows.

The entity identity inference is performed in both the
relation and the attribute views. First, a strategy similar to
BootEA [46] is adopted to generate triples as follows: when
an entity in a true triple, either head or tail, exists in the cur-
rent set of aligned entities S, replace that entity by its aligned
one in S generates a new triple. Then the sum of the plau-
sibility (fuiple) of all the generated triples is minimized in
both the relation and attribute views, which update all the
embeddings. The updated embeddings are then fed into the
relation and attribute identity inference below.

In the relation and attribute identity inference, first a simi-
lar strategy as AttrE [51] is adopted to derive soft relation and
attribute predicate alignments by string similarity. Then the
relation (attribute, respectively) identity inference generates
triples in the relation view (attribute view, respectively) as
follows: when a relation (attribute, respectively) predicate in
a true triple exists in derived relation (attribute, respectively)
alignments, replace the relation (attribute, respectively) pred-
icate with its aligned counterpart. Then the sum of the
plausibility (fuiple) of all the generated triples is minimized
in both the relation and attribute views, which update all the
embeddings.

The embeddings of an entity for the three views obtained
above are combined into one embedding for the entity by
averaging each view or minimizing a combination loss func-
tion. Finally, the inference module uses NNS based on the
similarity between the combined entity embeddings.

COTSAE [73] alternatively trains structural and attribute
embeddings and then combines the alignment results
obtained from them.

6 GNN-based EA techniques

GNNss suit KGs’ inherent graph structure so there are growing
numbers of EA techniques based on GNNs recently. GNN-
based EA techniques are categorized into GCN-based and
GAT-based ones. They usually encode KG structure by the
neighborhood of entities and many of them take attributes as
input features for the embedding module because aligned
entities tend to have similar neighborhood and attributes.
Most GNN-based techniques use only seed entity alignments
rather than other kinds of seed alignments in the training.

6.1 GCN-based EA techniques

GCN-Align [59] is the first study on GNN-based EA. Like
many GNN-based EA techniques, GCN-Align learns entity
embeddings from structural information of entities. GCN-
Align also exploits attribute triples by treating them as
relation triples. Specifically, GCN-Align uses two GCNs to
embed the entities of G; and G, (one GCN for each KG) into
aunified space with shared weight matrices, described by the
following equation:

PR S |
HTH =D ?AD 2[HOWO | HO WD)
(29)

where H §” and H g,l) are the matrices for the structural and
attribute embeddings, respectively; ng) and Wfll) are the
weight matrices for these two types of embeddings, which are
shared by the two GCNs. The matrix H?) in the vanilla GCN
[24] (Equation 4) is replaced by a concatenation of structure
and attribute embedding matrices. Unlike GCN, GCN-Align
considers various types of relation predicates in KGs when
computing the element a;; € A. The new adjacency matrix
A is designed as follows:

ajeAd= Y g+ Y

(ei,r.ej)eT, (ej.r.e)eT;

8 (r) (30)

where a;; is the edge weight from the ith entity to the jth
entity. Both (e, r, ¢;) and (e;, r, e;) are triples in a KG. The
functions gj (r) and g;(r) compute the number of head enti-

@ Springer

1156

R.Zhang et al.

ties and the number of tail entities connected by relation r
divided by the number of triples containing relation r, respec-
tively. In this way, the adjacency matrix A helps model how
the embedding information propagates across entities.

GCN-Align is trained by minimizing a margin-based loss
function like Eq. 1. Taking into account of both structure
and attribute embeddings, GCN-Align defines its alignment
score function as follows:

llhs(e1) — hs(e2))llL,
dy
llha(e1) — ha(e2)lli,
da

fatign(e1, e2) = B

+{-58) 31)

where hg(-) and h,(-) are the structure embedding with
dimensionality d; and attribute embedding with dimension-
ality d,;, respectively; B is used to balance the importance of
these two embeddings.

HGCN [63] explicitly utilizes relation representation to
improve the alignment process in EA. To incorporate the
relation information, HGCN jointly learns entity and relation
predicate embeddings in three stages as follows.

State 1 computes entity embeddings by a GCN variant
named the Highway-GCN [40], which embeds entities into
aunified vector space. The layer-wise highway gates control
the forward propagation on top of the vanilla GCN layer,
formulated as function 7 below:

T(H(l)) — G(H(I)W(l) + b(l)) (32)
HW”ZY(HW)QHW”+(1—TOWv)®HW
(33)

where H® is the output of the I'" layer and the input of
the (I 4+ 1) layer, WO and P are the weight matrix and
bias vector, respectively; © is element-wise multiplication.
HGCN computes entity embeddings for both KGs separately
and then maps the embeddings into a unified vector space
using Eq. 1.

Stage 2 gets relation predicate embeddings based on their
head and tail entity representations. This stage first computes
the average embeddings of all the head entities and tail enti-
ties connected to the relation predicate, respectively. The two
averaged embeddings are then concatenated as the embed-
ding of the relation predicate after a linear transformation.

Stage 3 uses Highway-GCN again with the input being the
concatenation of the entity embeddings computed in Stage 1
and the sum of all the relation predicate embeddings related
to the entity. The alignment module maps the output of the
Highway-GCN for the two KGs into a unified vector space
with a loss similar to Eq. 1.

GMNN [69] formulates the EA problem as graph match-
ing between two topic entity graphs. Every entity in a KG

@ Springer

corresponds to a topic entity graph, which is formed by the
one-hop neighbors of the entity and the corresponding rela-
tion predicates (i.e., edges). Such a graph represents the local
context information of the entity. GMNN uses a graph match-
ing model to model the similarity of two topic entity graphs,
which indicates the probability of the two corresponding enti-
ties being aligned.

The graph matching model consists of four layers, includ-
ing an input representation layer, a node-level matching layer,
a graph-level matching layer, and a prediction layer. The
input representation layer uses a GCN to encode two topic
entity graphs and obtain entity embeddings. The node-level
matching layer computes the cosine similarity between the
embeddings of every pair of entities from two topic entity
graphs. This layer further computes an attentive sum of entity
embeddings as follows:

&l
_ dis1%.j e

i 4
=Y o
where o; ; is the cosine similarity between entity ¢; in a topic
graph and entity e in another topic graph. This computation
is done for entities from both two topic entity graphs. The
resultant weighted sum of embeddings serves as the input
to the graph-level matching layer. The graph-level matching
layer runs a GCN on each topic entity graph to further propa-
gate the local information throughout the topic entity graph.
The output embeddings of the GCN is then fed to a fully con-
nected neural network followed by the element-wise max and
mean pooling method to get the graph matching representa-
tions for each topic entity graph. Finally the prediction layer
takes the graph matching representation as input and uses a
softmax regression function to predict entity alignment.

MuGNN [5] addresses the structural heterogeneity
between KGs that may result in dissimilar embeddings of
the entities that should be aligned. To reconcile the hetero-
geneity (i.e., the difference) between the structures of G| and
G2, MuGNN uses a multi-channel GNN in the embedding
module to encode a KG in multiple channels toward KG
completion and pruning exclusive entities.

One channel of MuGNN conducts KG completion by
adding the relation predicates missing from a KG using
the Horn rules for each KG, e.g., marriedTo(x;y) A
liveln(x; z) = liveln(y; z), as extracted by AMIE+ [16].
The two resultant sets of rules are then transferred into each
other via parameter sharing. The other channel of MuGNN
prunes “exclusive entities,” i.e., those entities that only appear
in one of the two KGs.

Specifically, the multi-channel GNN is formulated as fol-
lows, assuming a two-channel MuGNN:

MULTIGNN(H'; A1, A2) = PooLING(H'™, HS™) (35)

A benchmark and comprehensive survey on knowledge graph entity alignment via representation... 1157

H'™ = GCN(A;, H', W)),i =1,2 (36)

where, similar to Equation 4, H' is the input entity embed-
dings of the current layer while H §+1 is the output entity
embeddings of this layer for the ith channel; A; and W;
are the adjacency matrix and learnable weight matrix in the
ith channel, respectively. At the end of the layer, pooling
is used to combine the two channels. The adjacency matri-
ces A; are determined by different weighting schemes with
self-attention and cross-KG attentions as follows.

A is determined based on self-attention, where element
a;;j is the connectivity from e; to e; as follows:

exp(cij)
Zek €N, Ufei} exp(cik)

a;j = softmax(c;;) = 37

Here, N, is the neighborhood of ¢;, and ¢;; is the attention
coefficient defined the same way as in Eq. 7.

A» prunes exclusive entities by lowering the weight of the
connectivity a;; between those entities if one of them is an
exclusive entity, formally:

ajj € Ay = max

1((ei, r1, €j) € Ty) sim(ry, r2)
ri€R1,meER, ! /

(38)

where R and R are the sets of relation predicates of G| and
Ga, respectively. The function 1(:) = L if (e¢;, 1, ¢;) € T,
and 0 otherwise. The function sim(r1, r7) is the inner-product
similarity between two relation predicates r; and r;.

To unify embeddings of G; and G, from the multi-channel
GNN into a same vector space, the alignment module of
MuGNN utilizes a variant of Eq. 1, which is the weighted
sum of the seed entity alignments loss and the seed relation
predicate alignments loss.

NMN [64] aims to tackle the structural heterogeneity
between KGs. To address this issue, the technique learns
both the KG structure information and the neighborhood dif-
ference so that the similarities between entities can be better
captured in the presence of structural heterogeneity.

To learn the KG structure information, NMN’s embed-
ding module uses a GCN with highway gates to model the
KG structure information with the input of a combination
of G| and G, to be aligned. This module is pre-trained with
a margin-based loss function (cf. Eq. 1) using seed entity
alignments.

NMN then uses cross-graph matching to capture the
neighborhood difference. A neighborhood sampling strategy
is first used to select the more informative one-hop neighbors,
based on the observation that the more often an entity and its
neighbor appear in the same context, the more representative
and informative the neighbor is for the entity. The cross-
graph matching then compares the sampled neighborhood

subgraph of an entity in the source KG with the subgraph of
each candidate entity in the target KG to select an optimal
aligned entity. A cross-graph vector is computed to indicate
whether the entities are similar. The cross-graph matching is
done by an attention mechanism.

NMN concatenate the entity embedding and its neighbor-
hood representation to get the final embeddings for EA. EA
is performed by measuring the Euclidean distance between
entity embeddings.

CEA [78] considers the dependency of alignment deci-
sions among entities, e.g., an entity is less likely to be an
alignment target if it has already been aligned to some entity.
The paper proposes a collective EA framework. It uses struc-
tural, semantic, and string signals to capture different aspects
of the similarity between entities in the source and the tar-
get KGs, which are represented by three separate similarity
matrices. Specifically, the structural similarity matrix is com-
puted based on the embedding matrices via GCNs with cosine
similarity, the semantic similarity matrix is computed from
the word embeddings, and the string similarity matrix is
computed by the Levenshtein distance between the entity
names. The three matrices are further combined into a fused
matrix. CEA then formulates EA as a classical stable match-
ing problem on the fused matrix to capture interdependent
EA decisions, which is solved by the deferred acceptance
algorithm [42].

Other GCN-based EA techniques RDGCN [62], which is
similar to HGCN, utilizes relation information and extends
GCNs with highway gates to capture the neighborhood struc-
tural information. RDGCN differs from HGCN in that it
incorporates relation information by the attentive interaction.
AVR-GCN [76] considers multi-mappings under the GCN
paradigm and learns the embeddings of entities and rela-
tion predicates simultaneously for KGs. Specifically, it first
learns these embeddings via an embedding model named
vectorized relational GCN and then uses a weight sharing
mechanism to join (e.g., via concatenation or vector trans-
formation) those embeddings into a unified vector space.
HMAN [72] takes into account even more other types of
information such as relation predicates, attribute values, and
entity descriptions besides the structural information. Specif-
ically, HMAN employs a pre-trained BERT model [10] to
capture the semantic relatedness of the descriptions of two
entities that cannot be measured directly. SSP [35] uses
both translation- and GNN-based paradigms. It captures
local semantics from relation predicates and global structural
information by a structure and semantics preserving network.
CG-MuAlign [86] addresses structural heterogeneity by col-
lectively aligning entities via the attention mechanism. XS20
[70] is another EA technique that addresses the many-to-one
alignment problem in its inference module. It models EA as

@ Springer

1158

R.Zhang et al.

a task assignment problem and solves it by the Hungarian
algorithm [25].

6.2 GAT-based EA Techniques

KECG [27] aims to reconcile the issue of structural hetero-
geneity between KGs by jointly training both a GAT-based
cross-graph model and a TransE-based knowledge embed-
ding model.

The cross-graph model in KECG embeds entities with
two GATs on the two KGs, which encode the graph struc-
ture information. The attention mechanism in the GAT's helps
ignore unimportant neighbors and mitigate the issue of struc-
tural heterogeneity. The GATSs’ projection matrices W (cf.
Eq. 5) are set to diagonal matrices, which reduces the number
of parameters to be learned and increases the model gener-
alizability.

As usual, KECG uses attention mechanisms as described
in Sect. 4.2 and margin-based loss for the cross-graph model
as described in Sect. 3.

The knowledge embedding model in KECG uses TransE
to encode the structural information in each KG separately.
The overall objective function of KECG is a weighted sum
of the loss functions from the cross-graph model and the
knowledge embedding model.

AliNet [48] is based on the observation that some aligned
entities from G; and G, do not share similar neighborhood
structures. Such aligned entities may be missed by the other
GNN-based EA techniques, because they rely on similar
neighborhood structures for EA. AliNet addresses the issue
by considering both direct and distant neighbors.

AliNet learns entity embeddings by a controlled aggre-
gation of entity neighborhood information. Without loss of
generality, we describe the process for two-hop neighbor-
hood below, although any number of hops is applicable. First,
a GCN is used to aggregate the direct (i.e., one-hop) neigh-
bors’ information. Let the embedding of an entity e; at the
Ith layer be eg)l after one-hop neighbor aggregation. Then
for two-hop neighbors, an attention mechanism is used to
indicate their contribution to the embedding of e; as follows:

! Dy (-1
elg’)z = a(Z al.(j)Wg)e;.)) 39
JeN2()UG)
where e/~ is the embedding of e; at the (/ — 1)th layer

of the GCN; N> (+) is the set of the two-hop neighbors of ¢;;

Wg) is a learnable weight matrix. To retain the difference

O
is

between ¢; and its neighbors, the attention coefficient Cij

computed using two different transformation matrices M Y)
and M g) for egl) and ey), respectively:

@ Springer

¢ = LEAKYRELU [(M §’>e§”)T(M§”ej.”)] (40)

At the end of each layer of AliNet, the information from
one-hop and two-hop neighbors is combined with a gating
mechanism, i.e., the embedding of entity e; at the /th layer is
computed as follows:

l l l l l
<o () i (1-g ()t e

where g(-) is the gate, g(e}) = o (Me!") + b), and M and
b are the weight matrix and the bias.

MRAEA [32] considers meta-relation semantics includ-
ing relation predicates, relation direction, and inverse relation
predicates, in addition to structural information learned from
the structure of relation triples. The meta-relation semantics
are integrated into structural embedding via meta-relation-
aware embedding and relation-aware GAT.

To compute the meta-relation-aware embeddings (con-
catenation of entity and relation predicate embeddings), we
first extend the set of relation triples by creating an “inverse
triple” for each triple by replacing the original relation pred-
icate with an “inverse relation predicate” while keeping the
same head and tail entities unchanged. Second, the entity and
relation embedding components of the meta-relation-aware
embeddings of the target entity are computed by averaging
those of the neighbor entities, respectively.

The relation-aware GAT generates a structure-and-relation
-aware embedding of each entity by attending the meta-
relation-aware embeddings of the target entity’s neighbors.
Specifically, the GAT’s attention coefficient ¢;;, which indi-
cates the importance of both the neighbor entity ¢; and the
connecting relation predicate ry to the target entity e;, is com-
puted as:

cij=w7[ei||e,-||ﬁ > n “2)

L Tk EM,‘(,’

where the embeddings e;, e, and ry are obtained from the
meta-relation-aware embeddings; w is a learnable weight
vector; M;j = {ri | (ei, rr, ej) € T} is the set of relation
predicates that link from e; to e, which incorporates relation
features into the attention mechanism.

As usual, MRAEA is trained with a margin-based loss
function like Eq. 1.

EPEA [60] learns embeddings of entity pairs via a pair-
wise connectivity graph (PCG) rather than embeddings for
individual entities. EPEA first generates the PCG, whose
nodes are pairs of entities from G; and G,. Given two entity
pairs (ey,;, e2,;) and (ey j, ez, ;) in the PCG, an edge is added
between the two entity pairs if there is a relation predicate
ri connecting ej; to ey ; in G; and a relation predicate r;
connecting e ; to ez j in G». After generating the entity pairs

A benchmark and comprehensive survey on knowledge graph entity alignment via representation... 1159

as the nodes of the PCG, EPEA uses a CNN to encode the
attributes of entity pairs into embeddings based on attribute
similarity. These attribute embeddings are then fed into a
GAT that further incorporates structural information and
produce a score, which indicates the probability of a pair
consisting of aligned entities. This scoring function is then
used as falign in Eq. 1 to train the whole model. The inference
module predicts aligned entities by performing binary clas-
sification on the scoring function value with the input being
the embeddings of entity pairs.

AttrGNN [31] learns embeddings from both relation
triples and attribute triples in a unified network. It partitions
each KG into four subgraphs containing attribute triples of
entity names, attribute triples of literal values, attribute triples
of digital values, and the remaining triples (i.e., relation
triples), respectively. For each subgraph, entity embedding
is computed based on attributes as well as the KG structure
using GAT; then a similarity matrix between G| and G, is
computed based on the entity embedding. Finally, the four
similarity matrices are averaged to yield a final similarity
matrix for the inference module.

7 Datasets and experimental studies

We discuss the limitations of existing datasets and exper-
imental studies, present our proposed datasets addressing
the limitations, and report on a comprehensive experimen-
tal study on representative EA techniques using our datasets.

7.1 Limitations of existing datasets

There are several significant limitations of existing datasets,
namely bijection, lack of name variety and, small scale,
which are detailed below.

Bijection Many existing papers, including some of the
benchmarking papers, have used datasets that consist of
two KGs where almost every entity in one KG has one
and only one aligned entity in the other KG, i.e., there is
bijection between the two KGs. Such datasets have been
generated from different language versions of Wikipedia
(e.g., DBP15K [45] and SRPRS,,y1ii [18]) and the applica-
tion argued for such datasets is aligning two KGs in different
languages, i.e., multilingual EA. However, such application
instances are infrequent in real life.

We argue that the following scenario is more common:
two KGs come from different sources, e.g., a generic KG
built from Wikipedia and the other from a domain-specific
source such as medicine, locations, flights and music. The
difference in the sources is typically not language but the
coverage of knowledge, so the two KGs are complementary
to each other and aligning them helps enrich them. There-
fore, non-bijection between the KGs is desired. A recent

paper [82] also points out that bijection is an unrealistic set-
ting and created DBP-FB, a dataset consisting of two KGs
built from different sources, DBpedia and Freebase. It is a
great step toward non-bijection datasets, but unfortunately,
a big limitation of DBP-FB is that it does not contain any
generic attribute (e.g., year, address, etc.) triples except entity
names and hence does not suffice the need of most recent EA
techniques, which make heavy use of generic attributes as
features. From our experiments (Table 5) we see that most
recent EA techniques use generic attributes as input features
which are essential for effectiveness. Creating datasets com-
ing from different sources is challenging. A recent industrial
benchmark dataset MED-BBK-9K [81] is built from different
sources. However, this dataset also has the bijection problem
and the size is small: the number of unique entities covered
in this dataset is less than 10, 000.

Lack of name variety Unlike recently proposed datasets
MED-BBK-9K and DBP-FB, most previous EA datasets are
constructed from KGs with the same source. For example,
DWY 100K [46] and its resampled version SRPRSono [18]
consist of KG pairs (DBpedia-Yago and DBpedia-Wikidata)
with the same primary source, Wikipedia. Thus, the names
of entities from two KGs may have the same surface label;
such names become “tricky features,” w<>hich can be used
to achieve 100% accurate EA easily (we call this the lack of
name variety problem). To address this problem, Sun et al.
[49] remove all the entity names from DWY 100K. However,
this is an overkill because, in real-world settings, KGs do
contain entity names as attributes but just have variety in the
names of the same real-world entity. The recently proposed
dataset DBP-FB have significant portion of entities (42%)
with different entity names and hence have good name vari-
ety due to the different data sources DBpedia and Freebase,
but its lack of generic attribute triples limits its use as men-
tioned earlier. We need datasets that have significant amount
of generic attribute triples and variety in the names. Our pro-
posed datasets address these issues.

Small scale Most existing datasets are of small (e.g.,
MED-BBK-9K contains 9162 unique entities) to medium
(e.g., DBP-FB contains 29,861 unique entities) sizes. Our
proposed datasets contain up to 600,000 unique entities from
the two KGs combined.

Table 3 summarizes the key properties of various datasets.
Our proposed benchmark DWY-NB has all the three desir-
able properties: non-bijection, name variety, and large size.
Some studies consider the property of whether the dataset is
multilingual or monolingual. We do not view it as an essen-
tial property that affects the utility of the datasets, since EA
techniques that utilize semantic information of KGs such as
attributes can first translate it into the target language. Note
that all the current multilingual datasets have the bijection
problem discussed earlier.

@ Springer

1160

R.Zhang et al.

Table 3 Dataset/Benchmark
comparisons

Name Non-Bijection Name variety Size* Language

DBP15K [45] No No Small Multilingual
DWY100K [46] Large No No Monolingual
SRPRS i [18] No No Small Multilingual
SRPRSmeno [18] No No Small Monolingual
DBP-FB [82]] Yes Yes Medium Monolingual
DBP-FB [82]] Yes Yes Medium Monolingual
MED-BBK-9K [81] No Yes Small Monolingual
DWY-NB (Our Proposed) Yes Yes Large Monolingual

*Dataset size represent the number of unique entities in the dataset: Small (< 20,000); Medium (20,000—

50,000); Large (> 50,000)

7.2 Limitations of existing experimental studies

Several recent studies aim at benchmarking EA tech-
niques. Sun et al. [49] re-implemented 12 representative
EA techniques, but the re-implementation missed important
components in some techniques such as predicate alignments
in AttrE [51] and MuGNN [5]). To avoid such problems, we
use the original code of each compared technique. Another
limitation of Sun et al. [49] is that they only used bijection
datasets. The study by Zhao et al. [82] does not include exper-
iments on techniques that use attribute triples such as AttrE
[51] and MultiKE [80], but as shown in our experiments,
most recent techniques use attribute triples and they have
much best performance. Zhang et al. [81] proposes a new
dataset MED-BBK-9K, but it has the limitations of bijection
and small size, making the study less comprehensive.

7.3 Our proposed benchmark DWY-NB

To address the limitations of existing datasets, we propose
a new benchmark called DWY-NB where NB stands for
non-bijection. This benchmark consists of two regular-scale
datasets and large-scale ones described at the end of this sub-
section; each of the regular-scale datasets consists of a pair of
KGs that can be used for the evaluation of EA techniques. We
call the two datasets DW-NB and DY-NB. The two KGs of
DW-NB are subsets of DBpedia and Wikidata [56], respec-
tively. The two KGs of DY-NB are subsets of DBpedia[1] and
Yago [19], respectively. We choose these sources as starting
points because they contain rich relation and attribute triples.

Now we explain how the datasets are generated. For ease
of explanation, we next use DW-NB as an example while
the process for DY-NB is similar. We start from the list of
aligned entities between two KGs (DBpedia and Wikidata)
from the dataset DWY 100K from [49], we call this list the
seed entity alignments. This seed entity alignment contains
a list of 100,000 alignments between the entities in DBpe-
dia and Wikidata, which originally provided by the DBpedia

@ Springer

website.> We extract all those triples from DBpedia (and
Wikidata, respectively) that contain the entities listed in the
seed entity alignments to form a sub-graph of DBpedia (and
Wikidata, respectively), and this sub-graph of DBpedia and
sub-graph of Wikidata become the pair of KGs in our DW-
NB dataset.

To address the bijection problem, we randomly remove a
certain percentage (25% by default) of the entities from each
of the two KGs; we make sure the entities removed from one
KG is different from the entities removed from the other KG
so that not every entity in one KG will have an aligned entity
in the other KG. As a result, by default 50% of the entities
in the two KGs combined do not have aligned ones. We also
vary the proportion of aligned entities in our benchmark.

To address the lack of name variety problem, we add vari-
ety to the entity name attributes as follows. In every KG
source (DBpedia, Wikidata, or Yago), there are often multi-
ple attributes corresponding to the name of the entity, which
we refer to as name attributes. These multiple name attributes
have different attribute values (i.e., entity names) as a result
of the curation process of the KGs conducted by different
humans. For an entity with multiple name attributes, we
select a name attribute that is different from that of the cor-
responding entity in the other KG, if any. Thus, the above
procedure provides variety in entity names between the KGs
in our datasets. After this process, it turns out that 36% of the
aligned entities have different entity names. The statistics of
DWY-NB are listed in Table 4. To conduct scalability exper-
iment in Experiment 5 of Section 7.4, we further generate
larger versions (100K, 300K, and 600K entities in each KG
of the KG pair) of the dataset DW-NB in the same way as
described above. Details of all the datasets can be found at
(https://github.com/ruizhang-ai/EA_for_KG).

2 https://wiki.dbpedia.org/downloads-2016-10.

https://github.com/ruizhang-ai/EA_for_KG
https://wiki.dbpedia.org/downloads-2016-10

A benchmark and comprehensive survey on knowledge graph entity alignment via representation... 1161

Table 4 Statistics of our proposed benchmark DWY-NB

Subset Unique entities Aligned entities Predicates Relationship triples Attribute triples
DW-NB

DBpedia 84,911 50,000 545 203,502 221,591
Wikidata 86,116 703 198,797 223,232

DY-NB

DBpedia 58,858 15,000 211 87,676 173,520

Yago 60,228 91 66,546 186,328

7.4 Experiments and results

We conduct five sets of experiments. Experiment 1: Follow-
ing the literature [7,46,64], the main evaluation measure for
the effectiveness of EA techniques is hits@1 (or hits@k)
which indicates the percentage of entities that have the cor-
rect aligned entity in the top-k predicated aligned entities.
Experiment 2: We evaluate the effect of attribute triples on the
effectiveness of EA techniques as using attribute triples has
been a trend of recently proposed EA techniques. Experiment
3: In addition to Experiment 1, we also evaluate the effective-
ness of EA techniques via direct downstream applications.
Experiment 4: At the end of Sect. 3, we argue that whether
a technique is designed to conduct multilingual EA is not
an essential characteristic because we can perform an auto-
matic translation on the semantic information into the target
language so that both KGs are in the same language. This
experiment justifies this argument. Experiment 5: We inves-
tigate how various techniques scale up with dataset sizes.

Compared techniques We compare representative tech-
niques that provide access to their code. We do not make
any changes to the code. We use the parameter settings sug-
gested in the original papers for each technique. For detailed
parameter settings of each technique, readers may refer to
the corresponding papers.

Datasets We use the two datasets in DWY-NB (cf. Sect. 7.3)
for the experiments. Note that many EA techniques such
as Cao et al. [5]; Ye et al. [76] use manually created
seed attribute/relation predicate alignments which positively
impacts the performance, while some other techniques do
not. To be able to isolate the effect of the factor being evalu-
ated for a certain experiment in our experimental study (e.g.,
the effect of seed entity alignments proportions, the effect of
attribute triples, etc.), we have aligned the predicates between
the KGs in those experiments so that predicate alignments
have the same effect on the performance of all the techniques
no matter whether they take measures to align predicates. If
we did not align the predicates in our data, then the tech-
niques that do not take measures to align predicates might
have poorer performance due to unaligned predicates rather
than due to the effect of the factor being evaluated.

Environments We run the experiments with an Intel(R)
Xeon(R) CPU ES5-2650 v4 @ 2.20GHz processor, 128GB
main memory, a Nvidia Tesla GPU with 32GB memory,
and Ubuntu 20.4. The programming language and libraries
include Python, TensorFlow, Torch, etc. depending on the
language used for the original code.

Experiment 1: the effect of seed entity alignments This
experiment evaluates the accuracy of EA in terms of Hits @k
while varying the amount of seed entity alignments used for
training from 10 to 50% of the total available set of seed
entity alignments (50,000 for DW-NB and 7500 for DY-
NB). Higher hits@k means better accuracy. Table 5 shows
the result. The accuracy of all the techniques gets higher with
more seeds, which is expected since more seeds provide more
supervision.

Overall, AttrE and MultiKE have much better performan
ce than the others especially when less seed entity alignmen
ts are available. This is because they make great use of vari
ous types of features such as attributes and relation predicat
es while the other techniques do not. AttrE’s performance
does not change while varying the amount of seeds since it
does not use seed alignments, so when seed alignments are
hardly available, AttrE is the clear winner. Only when the
amount of seed entity alignments reaches 50%, NMN has
slightly higher Hits@1 than AttrE. In general, to achieve
good alignment results, supervised models require seed alig
nments with the proportion of at least 30%.

Among the GNN-based techniques, RDGCN and NMN
are the top-2 in terms of Hits@1. It is worth noting that
the top-2 from both translation- and GNN-based techniques
exploit attribute triples, and we can see that on average, the
techniques that exploit attribute triples achieve much better
performance than the techniques that do not. JAPE has
poorer performance compared to other techniques that use
attributes because it uses very limited information from
attributes, only the data type of attribute value.

Experiment 2: the effect of attribute triples This experi-
ment evaluates how much benefit may be gained by exploit-
ing attribute triples. For every EA technique, we compare
the performance of a “using-attribute” version versus a
“not-using-attribute” version as follows. For a technique

@ Springer

1162

R.Zhang et al.

Table 5 Experiment 1: The effect of the amount of seed entity alignments on EA accuracy in terms of Hits @k (%)

Technique Seed: 10% Seed: 20% Seed: 30% Seed: 40% Seed: 50%
Hits@l Hits@10 Hits@] Hits@10 Hits@l Hits@10 Hits@] Hits@10 Hits@1 Hits@10

DW-NB

Translation-based MTransE 2.82 10.45 542 18.72 7.88 25.75 10.42 31.44 12.98 36.00
IPTransE 5.98 13.45 7.54 18.78 12.90 24.61 16.32 32.86 23.54 35.98
BootEA 8.12 16.15 12.54 20.13 17.92 28.38 21.46 35.16 25.44 37.57
TransEdge 22.98 48.12 38.29 56.22 45.27 68.95 49.26 75.25 54.85 79.68
JAPE 4.62 7.87 8.62 14.43 12.57 19.96 17.20 27.32 19.91 30.63
MultiKE 80.25 87.58 82.56 88.92 84.06 90.05 84.87 91.24 85.21 95.06
AttrE 87.98 95.80 87.98 95.80 87.98 95.80 87.98 95.80 87.98 95.80

GNN-based MuGNN 13.49 37.79 20.96 49.28 26.92 56.77 31.09 61.43 3441 64.96
AliNet 14.58 31.46 18.55 35.84 24.34 50.46 28.39 55.46 35.31 58.22
KECG 18.95 34.17 24.32 40.78 30.24 48.66 35.29 52.12 39.40 62.31
GCN-Align 1240 30.18 20.04 41.56 24.76 48.52 29.02 53.43 31.80 56.20
HGCN 58.08 62.15 63.14 68.15 78.97 86.51 84.25 90.75 88.54 91.54
GMNN 71.32 74.24 75.34 79.23 80.98 82.23 82.67 85.87 84.59 88.64
RDGCN 59.22 62.98 64.22 68.98 79.02 87.12 85.34 90.45 88.21 93.23
CEA 50.13 52.31 63.25 64.12 80.32 84.21 84.34 85.54 86.58 88.34
MRAEA 53.75 54.74 64.58 66.12 81.54 85.97 83.54 86.02 84.06 87.55
NMN 51.45 59.78 68.21 72.54 84.03 88.21 85.65 90.54 88.69 95.46

DY-NB

Translation-based MTransE 0.01 0.15 0.01 0.39 0.08 0.68 0.08 1.39 0.13 1.89
IPTransE 1.54 9.87 5.67 25.76 14.55 36.45 15.77 45.81 17.33 52.18
BootEA 2.15 14.19 8.47 38.15 15.77 48.32 17.22 57.15 19.24 58.14
TransEdge 22.98 47.50 37.85 64.85 48.98 72.15 58.95 76.54 62.49 78.54
JAPE 0.70 1.83 1.57 3.37 1.40 3.27 1.37 1.77 2.37 4.97
MultiKE 81.87 88.05 82.11 89.26 84.97 90.84 87.22 92.05 89.25 93.58
AttrE 90.44 94.23 90.44 94.23 90.44 94.23 90.44 94.23 90.44 94.23

GNN-based MuGNN 19.16 51.41 27.40 62.69 31.60 68.56 34.73 71.24 37.15 74.07
AliNet 13.54 28.53 14.25 31.69 25.39 58.31 28.98 56.12 34.59 64.12
KECG 11.19 23.65 14.89 27.25 20.95 34.48 22.81 35.44 24.71 37.15
GCN-Align 8.56 25.09 17.88 43.88 24.36 53.43 31.29 62.44 33.56 67.88
HGCN 52.54 64.51 65.87 77.40 71.14 85.64 71.45 85.64 74.54 87.48
GMNN 62.34 70.34 64.32 67.34 75.57 7747 78.65 82.65 82.34 85.62
RDGCN 53.13 65.30 67.28 78.21 74.54 85.22 77.45 87.43 78.67 89.45
CEA 55.24 58.97 64.35 65.42 74.56 78.42 77.78 80.95 78.91 83.24
MRAEA 52.46 53.20 60.33 64.54 73.71 78.52 74.25 78.66 76.22 80.15
NMN 55.74 64.78 62.54 70.54 75.87 80.54 84.55 88.69 90.78 94.77

*Techniques that use attribute triples are underlined; boldfaced numbers indicate the best performance in that experiment. The rest tables and figures

follow this convention

*AttrE does not use any seed alignments

that exploits attribute triples by design, we get the perfor-
mance of its “not-using-attribute” version by only using
relation triples (and not using attribute triples) to compute
the entity embeddings. For a technique that only uses relation
triples by design, we get the performance of its “using-
attribute” version by applying a naive way of exploiting

@ Springer

attribute triples, i.e., treating the attribute triples as relation
triples which means treating the attribute values as nodes
in the graph. Figure 3 shows the results. The proportion
of seed entity alignments used in this experiment is 30%
and the results on other proportions have a similar behavior.
For every technique, the “using-attribute” version outperfor

A benchmark and comprehensive survey on knowledge graph entity alignment via representation... 1163
o
=
£28mmmmmﬁ%ﬁ%ﬁ%ﬁ%ﬁ%a%ﬁ% % % Z) % % % vz
F 08 5 5 Z =2 ®8 ©C &2 g g d g <« g =T =
& = & S 2 < X = & jun @) O] o =
= a5 = = = = =
®) =
1%8 DW-NB
—
2 NEREEET N
= 2 %Emﬁ%ﬁ%@%@%%% v A 7t P 7 7 % 7z
ca) = < €a) @) g B g Z Z < Z <q Z Z <) &3
g o o4 2 O & 2 & Z ¢ o O m‘ zl S ¥ E
£ = bS]] B < = M U O < &) ©) = Z e Z
g g B < 2 < 7 25 o &5 A4 O |
= & S E = =
O
DY-NB

0% Not using attribute

BB Using attribute

Fig.3 Experiment 2: Using attributes versus Not using attributes (sorted by performance of “using-attribute” version)

ms the “not-using-attribute” version, especially for those tec
hniques that use attribute triples by design. These show that
making good use of attribute triples can improve the accura
cy significantly. Among them, the gap between the two
versions of AttrE is huge, because AttrE does not use
seed alignments and heavily rely on attributes to train the
alignment module. MultiKE uses both seed alignments and
attribute triples to produce the unified embedding space
and hence has relatively smaller gap between the two ver-
sions, but still using attributes provides substantial gains.
When the KGs do not contain attribute triples but seed align
ments are available, MultiKE is the winner. In comparison,
the performance of GNN-based techniques (e.g., HGCN,
RDGCN, NMN) drops significantly (most by 50%) when
“not-using-attribute,” as they heavily rely on entity names to
initialize the node embeddings in the embedding module. In
the absence of entity names, node embeddings are randomly
initialized which leads to poor performance. Interestingly,
the techniques that do not use attribute triples by design also
gets better performance with the “using-attribute” version,
even this is by the naive way of treating attribute triples as
relation triples.

As a case study to understand the benefit of attribute triples
intuitively, we examine the following example: dbp : A1i_L
ohan and dbp:Lindsay_Lohan are siblings that have
the same neighbors: dbp : Michael_Lohan and dbp:Di
na_lohan, which represent the father and mother, respec-
tively. EA techniques that only use the graph structure
information cannot distinguish dbp:Ali_TLohan from
dbp:Lindsay_Lohan, which may lead to a misalign-
ment. EA techniques that exploit attribute triples can use
the attribute triples, such as (dbp:Lindsay_Lohan,

birth_date, 1986-07-02) and (dbp:Ali_Loh
birth_date, 1993-12-22) to distinguish
them. Such cases are very common in the two KGs.

an,

Experiment 3: the effect of the alignment module on KG
embeddings The training in EA techniques optimize for
two objectives, the KG embeddings and the alignment of
two KGs (either jointly or alternatively), rather than merely
the KG embeddings, so it might not produce the best KG
embeddings. This experiment evaluates how the quality of the
KG embeddings obtained from EA techniques are affected
compared to the KG embeddings obtained from pure KG
embedding techniques (TransE for translation-based and
GCN for GNN-based techniques) via downstream applica-
tions of KGs. Following previous studies in EA techniques
[49,82], we use two common downstream tasks for this pur-
pose: link prediction for translation-based techniques and
node classification for GNN-based techniques, detailed as
follows. The link prediction task aims to predict ¢ given h
and r of a relation triple. Specifically, first a relation triple is
corrupted by replacing its tail entity with all the entities in the
dataset. Then, the corrupted triples are ranked in ascending
order by the plausibility score computed as h + r — ¢. Since
true triples (i.e., the triples in a KG) are expected to have
smaller plausibility scores and rank higher in the list than the
corrupted ones, hits@ 10 (whether the true triples are in the
top-10) is used as the measure for the link prediction task.
The node classification task aims to classify nodes and deter-
mine their labels. Given the embedding of a node, a simple
classifier SVM [9] with twofold cross-validation is trained to
predict the entity type (e.g., person, organization,
etc.) of the node. Table 6 shows the accuracy of downstream

@ Springer

1164

R.Zhang et al.

Table 6 Experiment 3: effects on downstream tasks

Technique ~ DBP-WD (seed) DBP-YAGO (seed)

(10%) (30%) (50%) (10%) (30%) (50%)

Link Prediction (Evaluating Translation-based Models)

MultiKE 88.76 88.98 89.52 98.62 98.87 98.07
AttrE 88.50 88.50 88.50 9875 98.75 98.75
TransE* 87.45 87.45 87.45 9842 9842 9842
TransEdge 85.27 85.71 86.40 9324 9354 93.76
JAPE 8324 83771 83.09 75.03 7532 75.66
IPTransE 81.06 81.23 81.78 93.10 93.55 9391
BootEA 80.41 8090 81.66 94.11 94.54 94.85
MTransE 80.10 80.33 80.69 93.81 9431 94.74
Node Classification (Evaluating GNN-based Models)

GCN* 64.93 6493 6493 68.21 6821 68.21
NMN 62.25 62.74 62.85 6646 6657 66.79
CEA 60.06 60.24 60.39 6595 6631 66.66
MRAEA 5795 58.34 58,56 6577 6587 66.37
GCN-Align 54.05 5452 5493 61.54 62.03 6237
HGCN 5393 5411 5459 6579 6624 6648
GMNN 5221 5236 5267 67.63 67.87 6795
MuGNN 51.63 5196 5246 43.16 4345 4358
RDGCN 51.31 5146 51.86 56.80 57.00 57.28
KECG 4483 45.19 4550 57.75 58.12 5845
Alinet 42.68 4298 43.16 3796 3845 38.72
*Baseline

applications on DWY-NB with 10%, 30%, and 50% of seed
entity alignments. The accuracy increases with the amount
of seed alignments but not significantly.

Translation-based EA techniques are compared against
TransE, a pure KG embedding technique. MultiKE and
AttrE have higher link prediction accuracy than TransE whi
le the others do not. This is because MultiKE and AttrE make
great use of various types of information including attribute
triples as input features, which improve the quality of KG
embeddings.

GNN-based EA techniques are compared against GCN,
a pure KG embedding technique. All of the GNN-based
techniques have lower node classification accuracy than GC
N; the best one is NMN (about 2% lower than GCN). The
techniques that use attribute triples achieve better accuracy
than those that do not.

In summary, the KG embeddings obtained from EA tech
niques may have slightly better or worse performance in do
wnstream tasks depending on the paradigm of KG structure
embeddings, details provided in previous paragraphs.

Experiment 4: Multilinguality This experiment evaluates
how various techniques perform on multilingual KGs with
the approach of first translating into the same language.
Following previous studies [82] we use the multilingual

@ Springer

dataset SRPRSu;i [18], which contains two KG pairs
EN-DE and EN-FR. To translate the attribute triples into
English, we use a popular open-source translation tool
Fairseq [36]. For each technique we run a version “not
using attributes” (the original techniques) and a version
“using attributes” (the translation approach). The results
are shown in Table 7. All the techniques have significant
improvement by using attributes via the translation approach,
including the techniques that can perform multilingual EA
by design (mostly all the GNN-based techniques). AttrE
and MultiKE are not designed for multilingual EA, but
via the translation approach both have comparable per-
formance to the techniques designed for multilingual EA.
These validate our argument that techniques designed for m
onolingual EA can perform multilingual EA well by exploit
ing semantic information (such as attributes) and automatic
translation.

Experiment 5: Scalability This experiment evaluates how
various techniques perform as data sizes grow. We use the
same way described in Sect. 7.3 to create EA datasets with
varying numbers of entities 100K, 300K, and 600K in each
KG of the KG pair. The sources of the pair of KGs are
DBpedia and Wikidata, so we call them DW-NB-100K,
DW-NB-300K, and DW-NB-600K, respectively. We have
addressed the bijection and name variety problems in them
such that the numbers of seed entity alignments are around
50K, 150K, and 300K, respectively. For each dataset, we

Table 7 Effects of multilingual KGs

Technique Hits@1
Not using attributes Using attribute
EN-DE EN-FR EN-DE EN-FR

MTransE 14.51 8.58 21.78 13.31
IPTransE 8.09 9.45 12.80 14.46
BootEA 24.67 35.20 36.66 51.50
TransEdge 27.53 37.81 40.11 55.21
MuGNN 15.61 19.44 23.22 28.81
Alinet 14.07 18.36 20.82 27.30
KECG 20.90 20.34 31.24 30.28
JAPE 15.86 19.90 24.00 29.44
MultiKE 46.53 41.78 67.56 60.56
AttrE 14.55 12.83 64.74 56.79
GCN-Align 21.18 30.86 31.10 45.38
HGCN 46.78 38.25 67.76 5591
GMNN 46.53 38.09 67.63 55.28
RDGCN 46.06 39.77 66.72 57.95
CEA 46.72 43.97 67.83 63.83
MRAEA 47.67 43.25 69.13 62.67
NMN 48.08 42.96 69.47 62.72

A benchmark and comprehensive survey on knowledge graph entity alignment via representation...

1165

use 30% of the aligned entities for training. We focus our
experiments on four representative techniques, AttrE, Mul-
tiKE, NMN, and MRAEA, the top-2 from translation- and
GNN-based techniques on the DW-NB dataset.

Theoretical analysis. For simplicity, suppose both KGs
have a similar number of entities N. Let M denote the total
number of triples (i.e., the number of edges) in the two KGs;
then M is N2 in the worst case but M << N? in practice as
the graph is sparse.

The inference module is typically via NNS or similar oper-
ations, which has the time/space cost of O(N) for each entity;
for aligning all the entities, the time cost is O(N?) and space
costis O(N).

The training module includes an embedding module and
an alignment module. The time/space cost for the embed-
ding module is O(M) as it iterates through all the triples
in the two KGs as well as a fixed number of negative sam-
ples per positive sample (i.e., per triple). The time/space cost
of the alignment module depends on the algorithm. Most
techniques iterate through the seed entity alignments and
optionally a fixed number of negative alignment samples per
seed entity alignment, so the cost is O(|S|), where |S| is the
number of seed entity alignments. AttrE is a special case as
it does not use seeds; its cost is O (N) according to Sect. 5.2.
The space cost of alignment is O (N). The space cost for the
training is O(N).

Note. Although translation- and GNN-based techniques
have the same asymptotic training cost, their practical GPU
memory usage differs greatly due to different training mecha-
nisms. Each training iteration of translation-based techniques
typically requires computing the translation function (Eq. 3)
or its variant, which only involves several triples. The two
KGs and the embeddings are stored in the CPU memory.
A machine learning framework such as TensorFlow only
loads the triples needed for each training iteration, namely

mini-batch, from the CPU memory to the GPU memory.
We can control the mini-batch size to be as small as only
several triples, so the required GPU memory for translation-
based techniques is very small. In comparison, GNN-based
techniques usually use message passing to compute the
embedding of graph nodes and edges, and the message pass-
ing procedure in TensorFlow loads the whole graph into the
GPU memory, which is O(M), a large number. GPU mem-
ory is a bottleneck for running machine learning algorithms.
This makes translation-based techniques more scalable than
GNN-based ones in terms of GPU memory requirement.

Experimental results. Table 8 shows the running time and
GPU memory usage of the training module of four represen-
tative techniques as data sizes grow.

The running time of all the tested techniques is similar for
the same dataset size. Translation-based techniques, AttrE
and MultiKE, have constant GPU memory usage, because
it is determined by the size of mini-batches. MultiKE uses
more GPU memory than AttrE because MultiKE is more
complicated and computes more things. As the data size
grows from 100K to 300K, the GPU memory usage of
GNN-based techniques grows more than translation-based
ones because it is O(M). We are not able to run the two
GNN-based techniques on the 600K dataset as the GPU
memory on our server (32GB) is not enough. In summary,
translation-based techniques are more scalable than GNN-b
ased ones in practice. We observe that the growth of runnin
g time and GPU memory usage of GNN-based techniques i
s sub-linear, which is due to great sparsity of the graphs. Th
e inference modules of all the techniques take two to three
hours, much less than training.

Table 9 shows the accuracy of the techniques as the dataset
size grows. The accuracy of all the techniques degrades a
little as the number of entities increases. This is because for
the same entity in a KG, there are more entities in the other

Table 8 Running time and GPU

. Technique Running time (days) GPU memory usage (GB)
memory versus dataset sizes
100K 300K 600K 100K 300K 600K
AttrE 22 5.6 10.9 4.5 4.5 4.5
MultiKE 22 6.0 11.5 7.3 7.3 7.3
NMN 2.8 6.1 N/A 11.2 28.6 N/A
MRAEA 2.5 5.7 N/A 11.5 28.6 N/A
Table9 Accuracy versus Technique 100K 300K 600K
dataset sizes
Hits@1 Hits@10 Hits@1 Hits@10 Hits@1 Hits@10
AttrE 75.59 80.30 70.59 74.95 61.22 64.98
MultiKE 75.86 79.86 69.56 72.48 61.42 65.53
NMN 75.18 78.68 70.61 73.28 N/A N/A
MRAEA 71.70 77.00 69.18 72.33 N/A N/A

@ Springer

1166

R.Zhang et al.

KG similar to it in the case of larger datasets, making it harder
to predict the aligned entity correctly.

Alignment on large-scale KGs. An interesting question is
whether the algorithms can scale up to large-scale KGs such
as the full Wikidata (95 million entities) with Freebase (86
million entities). Interested readers are referred to the longer
version of this paper at https://arxiv.org/abs/2103.15059.

8 Conclusions and future directions

We have provided a comprehensive tutorial-type survey on
representative EA techniques that use the new approach of
representation learning. We have presented a framework
for capturing the key characteristics of these techniques,
proposed a benchmark DWY-NB to address the limitation
of existing benchmark datasets, and conducted extensive
experiments using the proposed datasets. The experimental
study shows the comparative performance of the techniques
and how various factors affect the performance. An insight
from the experiments is that making good use of semantic
information such as attribute triples improves the accuracy
significantly. AttrE and MultiKE consistently perform the
best in various settings of our experiments.

Future Directions In terms of the benchmark, more
experimental settings may be further explored such as vary-
ing the proportion of entities with the same name (i.e., the
proportion of the “tricky” feature), and the ratio between
relation triples and attribute triples.

In terms of the accuracy of EA techniques, we may
improve via pre-training. Pre-training has been very success-
ful in NLP but its use in knowledge bases is limited to using
pre-trained word embeddings for initializing entity name fea-
tures. There is still huge potential of innovative ways of
pre-training. For example, pre-trained predicate embeddings
may be computed based on the predicate description to cap-
ture the semantics and similarity of predicates from different
KGs. To train such embeddings, we may use transformer for
relation prediction from relation descriptions, i.e., given a
relation description, the model is trained to predict the cor-
responding relation. It may be further expanded into relation
prediction between two entities, where the model takes the
description of two entities and predicts the relations between
the two entities.

Various components and strategies used by EA techniques
may be improved following the analysis and discussions
based on our framework. First, many translation-based EA
techniques uses TransE as the KG structure embedding
(cf. Table 2). We may explore replacing this component
by improved versions of TransE such as TransD [20] and
TransR [30]. Second, many translation-based techniques use
the same loss function as TransE (Eq. 3). We may try the

@ Springer

limit-based loss function (Eq. 13) which has been reported
to have better performance [83]. Third, most of the existing
EA techniques use seed alignments in the alignment module
(cf. Fig. 2), but seed alignments are expensive and difficult to
obtain, so unsupervised EA techniques will be an attractive
direction.

In terms of the efficiency and scalability of EA tech-
niques, existing studies have mostly been conducted on small
datasets. It is important to develop techniques that can con-
duct EA on very large KGs, improving on both efficiency
and memory required.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives,
Z.G.: Dbpedia: A nucleus for a web of open data. In: ISWC 2007
(2007)

2. Bhattacharya, 1., Getoor, L.: Entity resolution in graphs. Mining
Graph Data 13, 311-344 (2006)

3. Bollacker, K.D., Evans, C., Paritosh, P., Sturge, T., Taylor, J.:
Freebase: a collaboratively created graph database for structuring
human knowledge. In: SIGMOD 2008 (2008)

4. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko,
O.: Translating embeddings for modeling multi-relational data. In:
NeurIPS 2013 (2013)

5. Cao, Y., Liu, Z., Li, C., Liu, Z., Li, J., Chua, T.S.: Multi-channel
graph neural network for entity alignment. In: ACL 2019 (2019)

6. Chen, B., Zhang, J., Tang, X., Chen, H., Li, C.: Jarka: Modeling
attribute interactions for cross-lingual knowledge alignment. In:
PAKDD 2020 (2020)

7. Chen, M., Tian, Y., Yang, M., Zaniolo, C.: Multilingual knowl-
edge graph embeddings for cross-lingual knowledge alignment.
In: IJCAI 2017 (2017)

8. Chen, M., Tian, Y., Chang, K., Skiena, S., Zaniolo, C.: Co-training
embeddings of knowledge graphs and entity descriptions for cross-
lingual entity alignment. In: IICAI 2018 (2018)

9. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn.
20(3), 273-297 (1995)

10. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training
of deep bidirectional transformers for language understanding. In:
NAACL 2019 (2019)

11. Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy,
K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-
scale approach to probabilistic knowledge fusion. In: SIGKDD
2014 (2014)

12. Du, L., Kumar, A., Johnson, M., Ciaramita, M.: Using entity infor-
mation from a knowledge base to improve relation extraction. In:
ALTA 2015 (2015)

13. Farber, M.: The microsoft academic knowledge graph: a linked
data source with 8 billion triples of scholarly data. In: ISWC 2019
(2019)

14. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. JASA
64(328), 1183-1210 (1969)

15. Francois, S., Francois, L.Y., Chuguang, Z.: Rdf-ai: an architecture
for rdf datasets matching, fusion and interlink. In: IICAI Workshop
2009 (2009)

16. Galarraga, L., Teflioudi, C., Hose, K., Suchanek, FEM.: Fast rule
mining in ontological knowledge bases with AMIE+. VLDBJ
24(6), 707-730 (2015)

https://arxiv.org/abs/2103.15059

A benchmark and comprehensive survey on knowledge graph entity alignment via representation...

1167

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.:
Neural message passing for quantum chemistry. In: ICML 2017
(2017)

Guo, L., Sun, Z., Hu, W.: Learning to exploit long-term relational
dependencies in knowledge graphs. In: ICML 2019 (2019)
Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A
spatially and temporally enhanced knowledge base from wikipedia.
Artif. Intell. 194, 28-61 (2013)

Ji,G.,He,S., Xu,L.,Liu, K., Zhao, J.: Knowledge graph embedding
via dynamic mapping matrix. In: ACL 2015 (2015)

Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on
knowledge graphs: Representation, acquisition and applications.
CoRR arXiv:2002.00388 (2020)

Julius, V., Christian, B., Martin, G., Georgi, K.: Discovering and
maintaining links on the web of data. In: ISWC 2009 (2009)
Kathuria, M., Nagpal, C., Duhan, N.: Journey of web search
engines: milestones, challenges & innovations. IJITCS 12, 47-58
(2016)

Kipf, T.N., Welling, M.: Semi-supervised classification with graph
convolutional networks. In: ICLR 2017 (2017)

Kuhn, H.W.: The hungarian method for the assignment problem.
In: 50 Years of Integer Programming 1958-2008 (2010)
Kulkarni, S., Singh, A., Ramakrishnan, G., Chakrabarti, S.: Col-
lective annotation of wikipedia entities in web text. In: SIGKDD
2009 (2009)

Li, C, Cao, Y., Hou, L., Shi, J., Li, J., Chua, T.: Semi-supervised
entity alignment via joint knowledge embedding model and cross-
graph model. In: ENLP 2019 (2019)

Lin, X., Yang, H., Wu, J., Zhou, C., Wang, B.: Guiding cross-lingual
entity alignment via adversarial knowledge embedding. In: ICDM
2019 (2019)

Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling
relation paths for representation learning of knowledge bases. In:
EMNLP 2015 (2015)

Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and
relation embeddings for knowledge graph completion. In: AAAI
2015 (2015)

Liu, Z., Cao, Y., Pan, L., Li, J., Chua, T.: Exploring and evaluating
attributes, values, and structures for entity alignment. In: EMNLP
2020 (2020)

Mao, X., Wang, W., Xu, H., Lan, M., Wu, Y.: MRAEA: an efficient
and robust entity alignment approach for cross-lingual knowledge
graph. In: WSDM 2020 (2020)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation
of word representations in vector space. In: ICLR Workshop 2013
(2013)

Ngomo, A.C.N., Auer, S.: Limes: a time-efficient approach for
large-scale link discovery on the web of data. In: IICAI2011 (2011)
Nie, H., Han, X., Sun, L., Wong, C.M., Chen, Q., Wu, S., Zhang,
'W.: Global structure and local semantics-preserved embeddings for
entity alignment. In: IICAI 2020 (2020)

Ott, M., Edunov, S., Baevski, A., Fan, A., Gross, S., Ng, N., Grang-
ier, D., Auli, M.: fairseq: A fast, extensible toolkit for sequence
modeling. In: NAACL-HLT 2019 (2019)

Pei, S., Yu, L., Hoehndorf, R., Zhang, X.: Semi-supervised entity
alignment via knowledge graph embedding with awareness of
degree difference. In: Web Conference 2019 (2019)

Pei, S., Yu, L., Zhang, X.: Improving cross-lingual entity alignment
via optimal transport. In: IJCAI 2019 (2019)

Qin, K.K., Salim, ED.,Ren, Y., Shao, W., Heimann, M., Koutra, D.:
G-crewe: Graph compression with embedding for network align-
ment. In: CIKM 2020 (2020)

Rahimi, A., Cohn, T., Baldwin, T.: Semi-supervised user geoloca-
tion via graph convolutional networks. In: ACL 2018 (2018)

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Raimond, Y., Sutton, C., Sandler, M.B.: Automatic interlinking of
music datasets on the semantic web. In: WWW Workshop 2008
(2008)

Roth, A.E.: Deferred acceptance algorithms: history, theory, prac-
tice, and open questions. Int. J. Game Theory 36(3—4), 537-569
(2008)

Shi, X., Xiao, Y.: Modeling multi-mapping relations for precise
cross-lingual entity alignment. In: EMNLP 2019 (2019)
Suchanek, F.M., Abiteboul, S., Senellart, P.: Paris: Probabilistic
alignment of relations, instances, and schema. In: PVLDB 2011
(2011)

Sun, Z., Hu, W., Li, C.: Cross-lingual entity alignment via joint
attribute-preserving embedding. In: ISWC 2017 (2017)

Sun, Z., Hu, W., Zhang, Q., Qu, Y.: Bootstrapping entity alignment
with knowledge graph embedding. In: IICAI 2018 (2018)

Sun, Z., Huang, J., Hu, W., Chen, M., Guo, L., Qu, Y.: Transedge:
Translating relation-contextualized embeddings for knowledge
graphs. In: ISWC 2019 (2019)

Sun, Z., Wang, C., Hu, W., Chen, M., Dai, J., Zhang, W., Qu, Y.:
Knowledge graph alignment network with gated multi-hop neigh-
borhood aggregation. In: AAAI 2020 (2020)

Sun, Z., Zhang, Q., Hu, W., Wang, C., Chen, M., Akrami, F., Li,
C.: A benchmarking study of embedding-based entity alignment
for knowledge graphs. In: VLDB 2020 (2020)

Tejada, S., Knoblock, C.A., Minton, S.: Learning object identifi-
cation rules for information integration. Inf. Syst. 26(8), 607-633
(2001)

Trisedya, B.D., Qi, J., Zhang, R.: Entity alignment between knowl-
edge graphs using attribute embeddings. In: AAAI 2019 (2019)
Trisedya, B.D.,Weikum, G., Qi, J., Zhang, R.: Neural relation
extraction for knowledge base enrichment. In: ACL 2019 (2019)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need.
In: NIPS 2017 (2017)

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P,
Bengio, Y.: Graph attention networks. In: ICLR 2018 (2018)
Verykios, V.S., Elmagarmid, A.K., Houstis, E.N.: Automating the
approximate record-matching process. Inf. Sci. 126(1-4), 83-98
(2000)

Vrandecic, D., Krotzsch, M.: Wikidata: a free collaborative knowl-
edgebase. CACM 57(10), 78-85 (2014)

Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embed-
ding: a survey of approaches and applications. TKDE 29(12),
2724-2743 (2017)

Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embed-
ding by translating on hyperplanes. In: AAAI 2014 (2014)

Wang, Z., Lv, Q., Lan, X., Zhang, Y.: Cross-lingual knowledge
graph alignment via graph convolutional networks. In: EMNLP
2018 (2018)

Wang,Z., Yang, J., Ye, X.: Knowledge graph alignment with entity-
pair embedding. In: EMNLP 2020 (2020)

Wu, Q., Shen, C., Wang, P., Dick, A., van den Hengel, A.: Image
captioning and visual question answering based on attributes and
external knowledge. TPAMI 40(06), 1367-1381 (2018)

Wu, Y, Liu, X., Feng, Y., Wang, Z., Yan, R., Zhao, D.: Relation-
aware entity alignment for heterogeneous knowledge graphs. In:
IICAI 2019 (2019)

Wu, Y., Liu, X., Feng, Y., Wang, Z., Zhao, D.: Jointly learning entity
and relation representations for entity alignment. In: EMNLP 2019
(2019)

Wu, Y., Liu, X., Feng, Y., Wang, Z., Zhao, D.: Neighborhood match-
ing network for entity alignment. In: ACL 2020 (2020)

Wu, Z., Pan, S., Chen, F, Long, G., Zhang, C., Yu, P.S.: A com-
prehensive survey on graph neural networks. TNNLS 32(1), 4-24
(2021)

@ Springer

http://arxiv.org/abs/2002.00388

1168

R.Zhang et al.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

Xiao, H., Huang, M., Zhu, X.: From one point to a manifold:
Knowledge graph embedding for precise link prediction. In: [JCAI
2016 (2016)

Xiao, H., Huang, M., Zhu, X.: Transg: a generative model for
knowledge graph embedding. In: ACL 2016 (2016)

Xie, Q., Ma, X., Dai, Z., Hovy, E.H.: An interpretable knowl-
edge transfer model for knowledge base completion. In: ACL 2017
(2017)

Xu, K., Wang, L., Yu, M., Feng, Y., Song, Y., Wang, Z., Yu, D.:
Cross-lingual knowledge graph alignment via graph matching neu-
ral network. In: ACL 2019 (2019)

Xu, K., Song, L., Feng, Y., Song, Y., Yu, D.: Coordinated reason-
ing for cross-lingual knowledge graph alignment. In: AAAI 2020
(2020)

Xu, L., Zhou, Q., Gong, K., Liang, X., Tang, J., Lin, L.: End-
to-end knowledge-routed relational dialogue system for automatic
diagnosis. In: AAAI 2019 (2019)

Yang, H., Zou, Y., Shi, P.,, Lu, W,, Lin, J., Sun, X.: Aligning cross-
lingual entities with multi-aspect information. In: EMNLP 2019
(2019)

Yang, K., Liu, S., Zhao, J., Wang, Y., Xie, B.: COTSAE: co-training
of structure and attribute embeddings for entity alignment. In:
AAAI2020 (2020)

Yang, S., Zhang, R., Erfani, S.M.: Graphdialog: Integrating graph
knowledge into end-to-end task oriented dialogue systems. In:
EMNLP 2020 (2020)

Yang, S., Zhang, R., Erfani, S.M., Lau J.H.: UniMF: A unified
framework to incorporate multimodal knowledge bases into end-
to-end task-oriented dialogue systems. In: IJCAI 2021 (2021)

Ye, R., Li, X., Fang, Y., Zang, H., Wang, M.: A vectorized rela-
tional graph convolutional network for multi-relational network
alignment. In: IJCAI 2019 (2019)

Yuan, Y., Xiong, Z., Wang, Q.: ACM: adaptive cross-modal graph
convolutional neural networks for RGB-D scene recognition. In:
AAAI2019 (2019)

Zeng, W., Zhao, X., Tang, J., Lin, X.: Collective entity alignment
via adaptive features. In: ICDE 2020 (2020)

@ Springer

79.

80.

81.

82.

83.

84.

85.

86.

87.

Zhang, F., Yuan, N.J,, Lian, D., Xie, X., Ma, W.Y.: Collabora-
tive knowledge base embedding for recommender systems. In:
SIGKDD 2016 (2016)

Zhang, Q., Sun, Z., Hu, W., Chen, M., Guo, L., Qu, Y.: Multi-view
knowledge graph embedding for entity alignment. In: IICAI 2019
(2019)

Zhang, Z., Liu, H., Chen, J., Chen, X., Liu, B., Xiang, Y., Zheng,
Y.: An industry evaluation of embedding-based entity alignment.
In: COLING 2020 (2020)

Zhao, X., Zeng, W., Tang, J., Wang, W., Suchanek, FM.: An
experimental study of state-of-the-art entity alignment approaches.
TKDE 2020, 1-1 (2020)

Zhou, X., Zhu, Q., Liu, P., Guo, L.: Learning knowledge embed-
dings by combining limit-based scoring loss. In: CIKM 2017
(2017)

Zhu, H., Xie, R., Liu, Z., Sun, M.: Iterative entity alignment via
joint knowledge embeddings. In: IICAI 2017 (2017)

Zhu, Q., Zhou, X., Wu, J., Tan, J., Guo, L.: Neighborhood-aware
attentional representation for multilingual knowledge graphs. In:
IICAI 2019 (2019)

Zhu, Q., Wei, H., Sisman, B., Zheng, D., Faloutsos, C., Dong, X.L.,
Han, J.: Collective multi-type entity alignment between knowledge
graphs. In: Web Conference 2020 (2020)

Zhuang, C., Ma, Q.: Dual graph convolutional networks for graph-
based semi-supervised classification. In: Web Conference 2018
(2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

	A benchmark and comprehensive survey on knowledge graph entity alignment via representation learning
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem formulation
	2.2 Related problems and traditional techniques

	3 Generic framework of embedding-based EA
	4 KG structure embedding models
	4.1 Translation-based embedding models
	4.2 GNN-based embedding models

	5 Translation-based EA techniques
	5.1 Techniques that only use KG structure
	5.2 Techniques that exploit relation predicates and attributes

	6 GNN-based EA techniques
	6.1 GCN-based EA techniques
	6.2 GAT-based EA Techniques

	7 Datasets and experimental studies
	7.1 Limitations of existing datasets
	7.2 Limitations of existing experimental studies
	7.3 Our proposed benchmark DWY-NB
	7.4 Experiments and results

	8 Conclusions and future directions
	References

