

Compressed Heterogeneous Graph for Abstractive Multi-document Summarization

Miao Li, Jianzhong Qi, and Jey Han Lau

School of Computing and Information Systems, The University of Melbourne, Australia

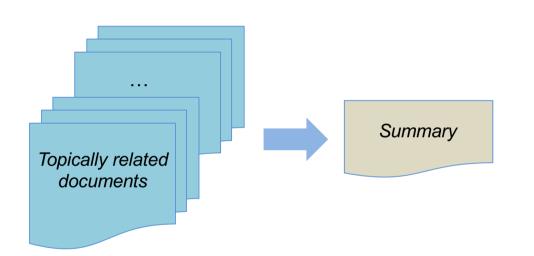
The 37th AAAI Conference on Artificial Intelligence, February 7-14, 2023

Task definition and background

- Abstractive multi-document summarization (MDS)
 - \odot Input: topically related documents
 - Output: a summary
- Summarizing multiple documents in an abstractive fashion

$$\mathbf{p}(\hat{z}|\mathcal{D}) = \prod_{i=0}^{T} \mathbf{p}(\hat{w}_i|\mathcal{D}, \hat{w}_0, \hat{w}_1, \dots, \hat{w}_{i-1})$$

- □ A wide range of applications, e.g.,
 - Creating news digests (Fabbri et al. 2019)
 - Summarizing product reviews (Gerani et al. 2014)



Related work and challenges

PLM-based MDS

- General-purpose PLMs, e.g., BART, Longformer, and T5
- \odot Tailored-purpose PLMs, e.g.,
 - PEGASUS (Zhang et al. 2020a)
 - PRIMERA (Xiao et al. 2022)

Drawbacks

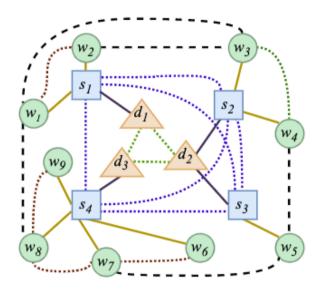
 Limited to learn cross-document relationships because of the flat concatenation of source documents

□ Graph-based MDS

- Only a handful of this type of models for abstractive MDS
- O Graphs of paragraphs (Li et al. 2020)
- Hierarchical graphs based on the document structure (Jin et al. 2020)
- Drawbacks
 - Only leverage homogeneous graphs
 - without considering different edge types of graphs
 - while the cluster of documents should be heterogeneous

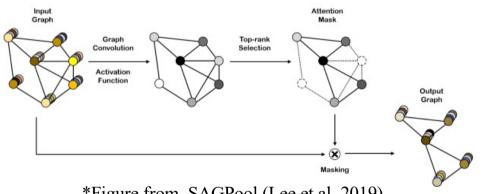
Our solution of HGSum

Using a heterogeneous graph to represent each cluster of source documents

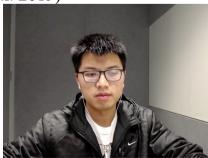


w: word; s: sentence; d: document

- Borrowing ideas from hierarchical graph pooling
 - Node dropping to generate a smallsized graph



*Figure from SAGPool (Lee et al. 2019)



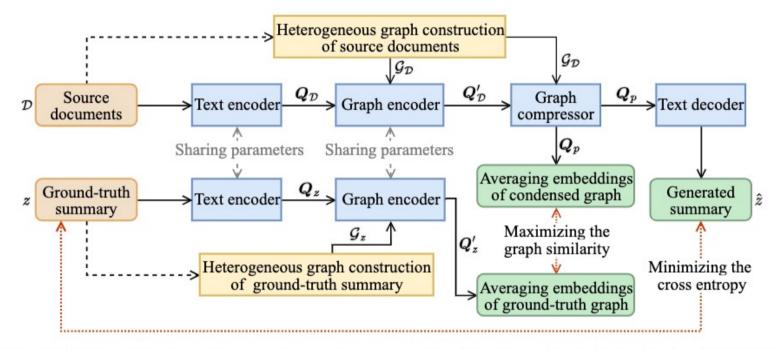


Figure 2: The HGSUM architecture: There are four main components: (1) text encoder (initialised using PRIMERA weights); (2) graph encoder; (3) graph compressor; and (4) text decoder (initialised using PRIMERA weights).

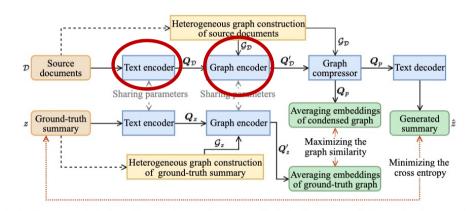


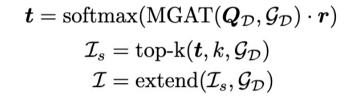
Figure 2: The HGSUM architecture: There are four main components: (1) text encoder (initialised using PRIMERA weights) (2) graph encoder; (3) graph compressor; and (4) text decoder (initialised using PRIMERA weights).

Graph encoder, Multi-channel GAT

$$\begin{split} \boldsymbol{h}_{i}^{(l+1)} &= \boldsymbol{U} \boldsymbol{H}_{i}^{(l)} \qquad \boldsymbol{h}_{i}^{(l),c} = \big\|_{m=1}^{M} \sigma \Big(\sum_{j \in \mathcal{N}_{i}^{c}} \alpha_{ij}^{m,c} \boldsymbol{W}^{m,c} \boldsymbol{h}_{j}^{(l),c} \Big) \\ \boldsymbol{H}_{i}^{(l)} &= \big\|_{c=1}^{C} \boldsymbol{h}_{i}^{(l),c} \qquad \alpha_{ij}^{m,c} = \frac{\exp(d_{ij}^{m,c})}{\sum_{k \in \mathcal{N}_{i}^{c}} \exp(d_{ik}^{m,c})} \\ &\alpha_{ij}^{m,c} = \frac{\exp(d_{ij}^{m,c})}{\sum_{k \in \mathcal{N}_{i}^{c}} \exp(d_{ik}^{m,c})} \end{split}$$

Text encoder

 $oldsymbol{Q}_{\mathcal{D}} = ext{longformer}(\mathcal{D})$ $oldsymbol{Q}_z = ext{longformer}(z)$



Text decoder

 $\hat{z} = \operatorname{transformer}(\boldsymbol{Q}_p)$

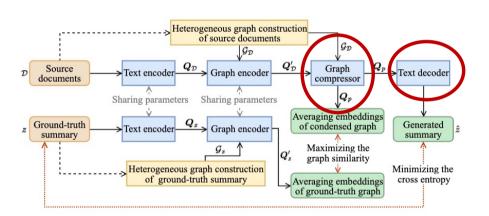


Figure 2: The HGSUM architecture: There are four main components: (1) text encoder (initialised using PRIMERA weights); (2) graph encoder; (3) graph compressor; and (4) text decoder (initialised using PRIMERA weights).

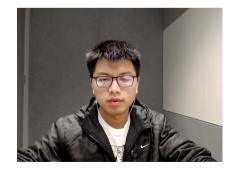
Heterogeneous graph construction of source documents $\mathcal{G}_{\mathcal{D}}$ $\mathcal{G}_{\mathcal{D}}$ $Q_{\mathcal{D}}'$ Q_p $oldsymbol{Q}_{\mathcal{D}}$ Source Graph → Graph encoder → Text decoder Text encoder compressor documents Sharing parameters Sharing parameters Averaging embeddings Ground-truth Generated of condensed graph Graph encoder 2 Text encoder summary summary Maximizing the G_z Q'_z graph similarity Heterogeneous graph construction Minimizing the of ground-truth summary ross entropy Averaging embeddings of ground-truth graph

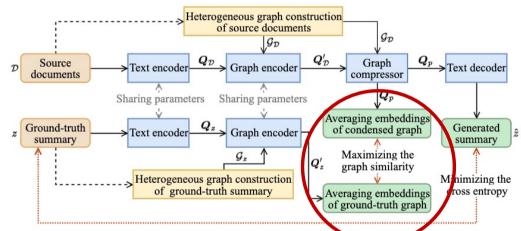
Figure 2: The HGSUM architecture: There are four main components: (1) text encoder (initialised using PRIMERA weights); (2) graph encoder; (3) graph compressor; and (4) text decoder (initialised using PRIMERA weights).

Multi-task training

$$\mathcal{L} = eta \mathcal{L}_{ce} + (1 - eta) \mathcal{L}_{gs}$$
 $\mathcal{L}_{ce} = -rac{1}{T} \sum_{i=1}^{T} w_i \log \hat{w_i}$

$$\mathcal{L}_{gs} = -\sin(\operatorname{avg}(\boldsymbol{Q}_p),\operatorname{avg}(\boldsymbol{Q}_z'))$$





Experiments: main results

Model	MULTI-NEWS			WCEP-100			Arxiv		
	R-1	R-2	R-L	R-1	R-2	R-L	R-1	R-2	R-L
PEGASUS	47.70	18.36	43.62	42.43	17.33	32.35	44.21	16.95	38.87
LED	47.68	19.72	43.83	43.05	20.94	34.99	46.50	18.96	41.87
PRIMERA	<u>49.40</u>	20.51	45.35	43.11	21.85	35.89	47.24	20.24	42.61
MGSum	45.63	16.71	40.92	38.88	14.22	23.37	40.58	11.22	29.93
GraphSum	45.71	17.12	41.99	39.56	14.38	29.41	42.98	16.55	37.01
HGSUM (our model)	50.64	21.69	45.90	44.21	<u>21.81</u>	36.21	49.32	21.30	44.50
Performance gain	+2.51%	+5.75%	+1.21%	+2.55%	-0.18%	+0.89%	+4.40%	+5.24%	+4.44%

Table 3: Model performance on summarizing MULTI-NEWS, WCEP-100, and ARXIV in terms of F1 of ROUGE scores. The best performance results are in boldface, while the second best is underlined.

- HGSum outperforms most of benchmark systems
- PLM-based models seems consistently better than previous graph-based models

Experiments: ablation study

- Removing different components result in a performance drop over all metrics
- Dropping the multi-task objective leads to the largest degradation in model performance

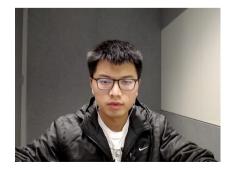
Model	R-1	R-2	R-L	BScore
HGSUM	50.64	21.69	45.90	87.38
w/o MGAT	48.87	20.32	43.21	87.08
w/o graph compressor	49.00	20.38	45.01	86.92
w/o multi-task training	48.10	20.30	44.24	86.85

Table 5: Results of ablation study on MULTI-NEWS.

 Our model can be initialized by any pre-trained Transformers

Initialized by	R-1	R-2	R-L	BScore
random weights	18.99	27.86	16.88	79.32
LED	48.36	19.99	44.25	86.73
PRIMERA	50.64	21.69	45.90	87.38

Table 6: Summarization results of HGSUM with different initialization on MULTI-NEWS.



Takeaways

- Abstractive multi-document summarization
- Aim to incorporate cross-document relationships into seq2seq
 - Construct heterogeneous graphs to represent cross-document relationships
 - Propose the idea of compressed heterogeneous graphs to incorporate GNN into Transformer architecture
- Experiments show HGSum outperforms other strong baselines on three datasets

*For details, please refer to our paper

Limitations

- Use more better evaluation metrics like BERTScore and BARTScore to evaluate the model
- Quantitatively evaluate whether the proposed model handles various cross-document relationships like contradicts

Questions & Answers

https://oaimli.github.io miao4@student.unimelb.edu.au

