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Abstract—Text clustering is one of the fundamental tasks in
natural language processing (NLP) and text data mining. It re-
mains challenging because texts have complex internal structure
besides the sparsity in the high-dimensional representation. In the
paper, we propose a new Neural Variational model with mixture-
of-Gaussians prior for Text Clustering (abbr. NVTC) to reveal
the underlying textual manifold structure and cluster documents
effectively. NVTC is a deep latent variable model built on the
basis of the neural variational inference. In NVTC, the stochastic
latent variable, which is modeled as one obeying a Gaussian
mixture distribution, plays an important role in establishing
the association of documents and document labels. On the
other hand, by joint learning, NVTC simultaneously learns text
encoded representations and cluster assignments. Experimental
results demonstrate that NVTC is able to learn clustering-friendly
representations of texts. It significantly outperforms several
baselines including VAE+GMM, VaDE, LCK-NFC, GSDPMM
and LDA on four benchmark text datasets in terms of ACC, NMI,
and AMI. Furthermore, NVTC learns effective latent embeddings
of texts which are interpretable by topics of texts, where each
dimension of latent embeddings corresponds to a specific topic.

Index Terms—Text clustering, Deep generative model, Neural
variational inference, Latent variable model

I. INTRODUCTION

Text clustering [1] refers to the process of analyzing a group
of texts and classifying similar texts into the same category
based on their content and inherent topics. As one of the
most fundamental tasks in natural language processing and
text data mining, text clustering has been widely applied in
news summarization, document organization and browsing,
and content recommendation on social websites. The sparse
high-dimensional representation space of texts [3] brings the
difficulty to text clustering. This problem reflects the fact that
any lexicon is rather large while each document contains only
a small number of words. Besides high-dimensional sparsity,
text data have complex internal structures, which has been the
obstacle for effective text clustering.

Different from text stream clustering, hierarchical text clus-
tering, and co-clustering [7], we focus on document-level par-
titional text clustering, in which the structure of the clustering
output is flat.

In the past decade, a large family of text clustering meth-
ods, e.g., GSDPMM [3], a text clustering method based on
the Dirichlet Process Multinomial Mixture model, have been
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proposed. With the development of deep learning technology,
deep neural networks have been used to model texts due to
their inherent capabilities of highly non-linear transformations.
Deep neural networks are expected to extract underlying com-
plex features of texts and map raw texts to clustering-friendly
representations to improve the quality of text clustering results.
The conventional approaches which leverage neural networks
for text clustering are building neural networks to extract
effective features of texts, and treat the feature transformation
and the clustering as two independent processes. In these
text clustering methods, the assumptions in dimensionality
reduction and feature transformation are generally independent
of the assumptions required by the clustering techniques. Thus,
there is no theoretical guarantee that the neural network would
learn feasible representations [27]. In recent years, the neural
variational inference [23] has attracted considerable attention.
Deep latent variable models which combine the composability
of graphical models with the flexible modeling capabilities
of deep networks are expected to clustering texts effectively
if properly optimized [20]. As a kind of the most popular
deep generative models, Variational Autoencoders (VAEs) [22]
have exposed their abilities of extracting underlying complex
structure of texts. Based on VAEs, VaDE [5], a deep clustering
framework is presented. VaDE shows good results in clustering
images. But it does not exhibit good performance in text
clustering and lacks interpretability for the learned latent
embeddings of texts.

In this paper, we propose a new effective Neural Variational
model with mixture-of-Gaussians for Text Clustering named
NVTC. NVTC is a deep latent variable model which is on
the basis of the neural variational inference. NVTC focuses
on clustering texts and its latent variable is interpretable via
text topics. Specifically, we treat the latent variable as the
bridge between documents and their labels, which is reflected
explicitly in the design of the loss function of NVTC. On this
point, NVTC comes away with a different strategy from VaDE,
where VaDE simplifies the factorization of the variational
posterior probability according to the mean-field theory so
that the connection information between the latent variable
and document labels is dropped.

In summary, the main contributions of this paper can be
concluded as follows:
• NVTC, a new effective neural variational model with

a mixture-of-Gaussians prior for text clustering is pro-



posed. Based on the neural variational inference, the loss
function of NVTC is derived from a new factorization
of the variational posterior with considering the positive
connection between documents and their category labels.

• By optimizing both the text encoding and clustering tasks
and learning latent code and clustering assignment jointly,
NVTC can simultaneously cluster texts effectively and
acquire latent coding of texts in a continuous lowdimen-
sional space. These latent representations can be applied
to downstream tasks, e.g., text indexing and document
similarity computation. Furthermore, the softmax decoder
of NVTC makes the learned latent embedding inter-
pretable by text topics.

• Extensive experiments on four benchmark datasets are
conducted to evaluate the text clustering performance
of NVTC. Experimental results demonstrate that NVTC
outperforms several baselines, i.e., VAE+GMM, VaDE,
LCK-NFC, GSDPMM and LDA, in terms of three of
the most widely used unsupervised clustering metrics
(i.e., ACC, NMI, AMI). Specifically, NVTC significantly
outperforms GSDPMM by approximately 0.15, 0.04 and
0.05 in ACC, NMI and AMI on 20NG, respectively.
Moreover, NVTC gets a much lower perplexity than
NVDM, VaDE and LDA on all benchmark datasets.

II. RELATED WORK

Existing text clustering methods can be classified into two
categories, traditional statistical methods and neural network-
based methods. The former can be further divided into
similarity-based text clustering [11] and model-based text
clustering [10].

In general, similarity-based methods use the vector space
model to represent text data, then define and calculate the
similarities among them, and finally run clustering algorithms
(e.g., K-means [12], DBSCAN [13], BIRCH [14] and their
typical variants) on the similarity matrices. Clustering models
which are based on the matrix decomposition [16] [17] and
the spectral graph analysis [15] have also achieved good
results in text clustering. For example, [17] proposes a new
decomposition method by maximizing the correntropy be-
tween the original matrix and the product of two factorized
low-rank matrices for document clustering. [11] proposes a
new approach to extract the document concepts which are
consistent with the local geometry of document submanifold
and then treat the documents with similar concepts as a cluster,
leveraging the power of both CF (Concept Factorization) and
graph Laplacian regularization. In these methods, since texts
are represented by high-dimensional sparse vectors, feature
extraction and dimension reduction are keys to effective text
clustering.

Model-based text clustering methods assume that texts are
generated by a statistical model, and apply the Expectation-
Maximization algorithm or the Gibbs sampling method to
estimate the parameters. For example, [3] [10] and [21] employ
the DPMM (the Dirichlet Process Multinomial Mixture model,
a nonparametric mixture model based on the Dirichlet process)

to model the text generating process. Especially, the model
presented in [3], i.e., GSDPMM, models documents through a
multinomial distribution on bag-of-words representations. On
the other hand, model-based topic modeling (such as LDA
[18]) also can be used for clustering of plain texts by assigning
each document to the most probable topic.

In recent years, some work focuses on learning effective
text features by deep neural networks to improve clustering
performance [27]. For example, [19] encodes text features in a
self-taught manner by a convolutional neural network, and then
performs text clustering by K-means algorithm. [20] proposes
a denoising auto-encoder for dimension reduction and clusters
texts in the learned latent space.

In the neural network-based models, some work accom-
plishes both feature learning and clustering assignments si-
multaneously [6] [5] [28] [27]. These previous studies have
shown that optimizing these two tasks jointly can improve
their performance significantly which can uncover the real
underlying structure of text data. For example, for text data,
LCK-NFC [26] treats feature extraction and clustering as
a united process, where clustering results can be used as
feedback information to optimize the network parameters.
However, LCK-NFC only optimizes the clustering loss [27]
and has the risk of learning corrupted text representations.
Especially, the LCK-NFC cannot show good text clustering
performance.

We notice that VAE-based deep clustering models [27] can
learn features and cluster assignments simultaneously, and the
most important is that these models combine the probability
graph models with neural networks.

VAE can be viewed as a simplified version of the neural
variational inference framework [23]. This framework in [23]
is for text modeling and combines the variational Bayesian
approach with the flexibility and extendibility of neural net-
works. In this framework, an encoder-decoder structure is
responsible for extracting a latent embedding for each input.
Specifically, a random latent variable z is assumed to be
generated from a Gaussian distribution and z is inferred by
a variational distribution q(z|x) which is parameterized by an
encoder network where x is the input text data. It is worth
noting that this variational distribution is an approximation to
the real posterior distribution p(z|x). With the latent variable
z as input, the decoder reconstructs the original input data x.
The parameters of this model are obtained by maximizing the
variational lower bound of the log-likelihood log p(x). The
goal of this objective function is to reduce the reconstruction
error and make the variational distribution q(z|x) close to the
prior p(z). This neural variational inference framework has
achieved success in many tasks with different data, including
images [25] and texts.

Existing VAE-based deep clustering models, e.g., VaDE
[5] and GMVAE [28] are mixture models. In detail, both
VaDE and GMVAE select the Gaussian mixture distribution
to describe the clustering structure of the data, and replace
the isotopic Gaussian of the general VAEs with the Gaussian
mixture distribution as the prior distribution of the latent



variables. Due to setting the assumption that the data are
generated from a Gaussian mixture distribution, the cluster of
the data is equal to the component in the mixture distribution
which the latent variables are generated from. GMVAE is more
complex than the VaDE model, and experimental results show
that the clustering performance of GMVAE is not as good as
that of VaDE [27]. Among the above models, some do not aim
at text data, and the left cannot obtain good performance of
text clustering, and no models can make the latent variables
interpretable.

III. NVTC MODEL

In this section, we first introduce the detail derivation
process of the loss function of NVTC in the view of likelihood
maximization, and then describe the implementation of the
model under the encoder-decoder network structure in the
framework of neural variational inference.

A. Loss function

NVTC is an unsupervised generative text clustering model.
From the view of the neural variational inference framework,
the model is obtained by replacing the Gaussian distribution
of the latent variable in VAEs with the Gaussian mixture
distribution, designing a new loss function and optimizing
the evidence lower bound of the newly derived log-likelihood
loss function. In detail, NVTC adopts a Gaussian mixture
distribution as the prior to describe the clustering structure of
text data, discarding the isotropic Gaussian distribution which
is regarded as the prior distribution of the latent variable in
vanilla VAEs. Further, the parameters of NVTC are learned
by maximizing the log-likelihood of input texts. Under the
assumption that documents are generated from a mixture of
Gaussians, inferring a cluster assignment of a document turns
into inferring which component of the latent distribution the
document is generated from. Thus, after maximizing the evi-
dence lower bound, the clustering assignments can be inferred
directly by the learned GMM (Gaussian Mixture Model).

Let x ∈ R|V | be the bag-of-words representation of a
document, V and |V | denote the vocabulary and its size,
respectively. Let the discrete variable y ∈ {1, 2, ..., k} denote
the clustering assignment of the document and k represents
the number of document clusters.

We introduce a continuous latent variable z ∈ Rd, which
is generated from a Gaussian mixture distribution, and let
z represent a latent embedding of a document in the latent
space, which learns salient and clustering-friendly features of
the document. Specifically, this latent embedding implies the
category of the document. That is, p(z) =

∑
y p(z|y)p(y).

Next, we give the generative process of documents in the
form of probabilistic graphical model in NVTC, as shown in
Fig. 1. First we choose a category y from p(y), and then
sample a latent variable z ∼ p(z|y) = N (µy,σ

2
y) from the

current category y, which represents the embedding of the
document in the latent space, and finally generate x from
p(x|z).

Fig. 1. The graphical model of the generative process of documents in NVTC.

According to the above generative process, the joint
probability p(x, z, y) of NVTC can be factorized to
p(x|z)p(z|y)p(y).

Since the log-likelihood of documents which is represented
by log p(x) is intractable, in order to derive its approximation,
we apply the variational Bayes method to obtain the evidence
lower bound (i.e., ELBO) and define the ELBO as the loss
function of NVTC (i.e., LNV TC). Eq. 1 reveals the key points.

log p(x) = log

∫ ∑
y

p(x, z, y)dz

≥ Eq(z,y|x) [log p(x, y, z)]− Eq(z,y|x) [log q(z, y|x)]
= LNV TC

(1)

where q(z, y|x) is the variational distribution which is an
approximation to the posterior distribution p(z, y|x).

According to the generative process described in Fig. 1, we
have

p(x|z, y) = p(x|z),
p(z, y|x) = p(z|x)p(y|z,x) = p(z|x)p(y|z)

(2)

Because q(z, y|x) is an approximation of the true posterior
p(z, y|x), q(z, y|x) is factorized to q(y|z)q(z|x) according to
Eq. 2. Then, LNV TC can be derived as follows.

LNV TC =

Eq(z|x) [log p(x|z)] + Eq(z|x)q(y|z) [log p(z|y)]

+ Eq(z|x)q(y|z) [log p(y)]− Eq(z|x)q(y|z) [log q(z|x)q(y|z)]

= Eq(z|x)

[
log p(x|z)− Eq(y|z) log

q(z|x)
p(z|y) −KL (q(y|z)||p(y))

]
(3)

where LNV TC incorporates the network loss and the clustering
loss. Specifically, the first term of LNV TC implies the expec-
tation of smaller reconstruction error (i.e., the network loss)
when given the latent variable z sampled from the variational
distribution, and ensures that more salient features of texts
can be extracted. The second term indicates that partitioning
z into different clusters and the substantial latent variable z
can be generated from the inferred category y, which ensures
that z can be assigned to the real cluster. The third term is
to regularize the variational distribution of y to approach its
prior distribution.



Fig. 2. The implementation of NVTC in an encoder-decoder structure.

Fig. 3. The structure of the softmax decoder.

B. Neural inference network

After the derivation of the loss function, we build a neural
inference network in an encoder-decoder structure to infer text
clustering. In the light of the basic encoder-decoder structure,
the encoder takes a document x as input and produces the
latent variable z, and then z is sent to the decoder which
reconstructs the original x. To perform the text clustering, the
target encoder-decoder network should be able to produce the
values needed by the loss function calculation and has an extra
classification neural network for the latent variable to obtain
the cluster assignment of x.

Fig. 2 shows the overall structure of our neural inference
network. The following give the details of our network.

In NVTC, we have assumed that the variational poste-
rior distribution q(z|x), i.e., the approximation of the true
posterior, is a Gaussian distribution, that is, q(z|x) ∼
N (µ(x),σ2(x)). Therefore, first, we take document x in
a bag-of-words representation as input, employ a multilayer
perceptron which is composed of three fully connected layers
as the encoder to obtain the mean µ(x) and standard deviation
σ(x) of above variational posterior Gaussian distribution. In
order to obtain the latent variable z and reduce the variance in
stochastic estimation, we sample ε ∼ N (0, I) and reparame-
terize z = µ(x)+ε ·σ(x) from the above variational posterior
Gaussian distribution [24].

Then, in order to decode z to the original document,

we assume that each word in the document is generated
independently, i.e., p(x|z) =

∏N
i=1 p(xi|z), where N is the

number of the words in the document and xi ∈ [0, 1]|V | is the
one-hot representation of the word at position i. Thus, LNV TC

can be further derived as

Eq(z|x)

[
N∑
i=1

log p(xi|z)− Eq(y|z) log
q(z|x)
p(z|y) −KL (q(y|z)||p(y))

]
(4)

Meanwhile, for the conditional probability of word xi, we
adopt a multinomial logistic regression to predict it. That is,

p(xi|z) =
exp{zTWxi + bxi

}∑|V |
j=1 exp{zTWxj + bxj

}
(5)

where W ∈ Rd×|V | is the linear transformation from the
latent variable space to the output space and it learns the
semantic embeddings of words, and bxi

is a bias term. W
and bxi

are the parameters which can be learned by a densely
connected softmax decoder. Employing a softmax layer as the
decoder also enables the latent variable interpretable by topics.
Fig. 3 demonstrates the linear structure of softmax decoder.
Empirically, the latent variable can be interpreted by document
topics and each dimension of z corresponds to a specific topic.
Each topic can be represented by the words with top-n highest
weights in the row of W. After having W and bxi

, the first
term in the loss function is able to be calculated.

Finally, it is also assumed that p(z|y) is a Gaussian distribu-
tion, that is, each component of p(z) is N (µy, I). Considering
that y is discrete, we set p(y) as a discrete uniform distribution
which q(y|z) approaches in the third term in the loss function,
that is, we expect the number of documents in each category to
be roughly equal. Further, considering that q(y|z) in LNV TC

can be any type of classifiers that are suitable for the latent
variable, we also use a multilayer perceptron composed of
two fully connected layers as the classifier to get the cluster
assignment y with z as input. Thus, we can calculate the
second and the third term in the loss function.



In the training stage, the expressive power of z and the clus-
tering performance is improved simultaneously by optimizing
the objective function LNV TC . Thus, after training, we can
obtain the cluster assignments of the documents by feeding the
learned latent embeddings into the classifier q(y|z) directly.

IV. EXPERIMENTS

In the experimental study, we evaluate the clustering per-
formance of NVTC on four benchmark text datasets and
conduct comprehensive comparisons with several text cluster-
ing baselines (i.e., VAE+GMM, VaDE, LCK-NFC, GSDPMM
and LDA). Three widely used external clustering metrics
including ACC (Unsupervised Clustering Accuracy) [5] [6],
NMI (Normalized Mutual Information) [8] and AMI (Adjusted
Mutual Information) [9] are adopted. Moreover, we evaluate
the capability of NVTC for document modeling by calculating
the perplexity (PPL) [23] of texts. We visualize the learned
latent embeddings of texts, which show the difference of
discriminative quality of the latent representations. We also
interpret the latent embeddings by topics of texts. Experi-
mental results show that NVTC achieves the state-of-the-art
text clustering performance on all the experimental benchmark
datasets. Furthermore, we analyze the impact of parameter k
in NVTC on the text clustering performance.

A. Experimental setup

We use four benchmark text datasets which are widely used
in evaluation of text clustering and classification methods, in-
cluding 20NewsGroups1 (20NG), Reuters RCV1-v22 (Reuters),
Reuters-16 [2] and Yahoo Answer (Yahoo)[4]. 20NG is a
collection of newsgroup documents, consisting of 18,846 with
the average length of 137.85 words from 20 major newsgroups.
Reuters is a large collection from Reuters newswire stories
with around 810,000 English news labeled with a category tree
in original Reuters dataset. To make a direct comparison with
[5], we choose four root categories (i.e., corporate/industrial,
government/social, markets, and economics) and finally get
685,071 documents by discarding all documents with mul-
tiple labels. In order to conduct experiment on diversified
text datasets, we adapt Reuters to be another large-scale
dataset, named Reuters-16, consisting of 563,335 documents
from 16 third-level categories in the category tree. Yahoo is
also a large-scale text dataset, containing millions of ques-
tions and answers from ten topics including Society&Culture,
Science&mathematics, etc. The summary statistics of these
datasets are shown in Table I after preprocessing (i.e., con-
verting all letters into lowercase, removing stop words and
stemming).

Training details of NVTC are as follows. In the encoder,
we set the neuron numbers of the three-layer perceptron as
512, 1024 and 512, respectively. The neuron numbers of two
full connected layers in the classifier are set to 256 and k,
respectively. To make a direct and reasonable experimental
comparison, we set the hyper-parameter k to the number

1http://qwone.com/jason/20Newsgroups
2http://trec.nist.gov/data/reuters/reuters.html

TABLE I
SUMMARY STATISTICS FOR 20NG, REUTERS, REUTERS-16 AND YAHOO.

Dataset #Documents #Clusters #Vocabulary #Avg Len
20NG 18,846 20 181,754 137.85

Reuters 685,071 4 268,063 119.65
Reuters-16 563,335 16 216,485 108.08

Yahoo 1,460,000 10 752,604 40.42

of ground-truth categories of text datasets, which is further
analyzed in Section IV-D. To facilitate the training of NVTC,
the learning rate α of Adam optimizer [30] is selected from
[2e-3, 1e-3] and β1 is set from [0.5, 0.9]. Practically, we notice
that when α=1e-3 and β1=0.9, NVTC achieves the best perfor-
mance. In order to improve the performance and stability of the
model, we employ a batch normalization layer before the input
of the decoder, i.e., conducting batch normalization on the
reparametrization results. We apply a batch size of 32 to train
NVTC model with 50 and 200 dimensional latent embeddings
respectively. Our fully connected layers are initialized with
random initialization. Moreover, we apply Adam optimizer
to learn the parameters of networks in NVTC and adopt
ReLU (Rectified Linear Unit) as the activation function in the
ecoder and classifier. To eliminate the impact of randomness
on experiments, we report the average results of all metrics
after running each model with different settings for twenty
independent trials on each dataset.

B. Unsupervised text clustering results

In the experiments for evaluation of text clustering perfor-
mance, we make quantitative comparison among NVTC and
other baseline models, including VAE+GMM, VaDE, LCK-
NFC, GSDPMM and LDA. VAE+GMM refers to treat text
feature learning and clustering as a pipeline process. That is,
latent embeddings of texts in the latent space are learned by
VAE, then the static latent embeddings are fed into GMM for
clustering. To make a direct comparison, in VAE+GMM, the
network structures of encoder and decode are set the same as
those of NVTC and the number of components of GMM is set
to the number of the ground-truth categories of text dataset.
For LDA, we treat the topics found by LDA as clusters and
assign each document to the cluster with the highest value in
its topic proportion vector. Following [3], we set the number of
topics in LDA to k, and set α = 0.002k, β = 0.1. Furthermore,
we reproduce VaDE, LCK-NFC and GSDPMM, all of which
follow the optimal settings in their original papers. Each of
these models is run for twenty times to obtain their average
performance on different experimental datasets.

Table II shows the clustering results of NVTC on these
four text datasets, compared with five baseline models in
terms of three widely-used clustering metrics on four different
experimental datasets. It is obvious that NVTC significantly
outperforms other baseline models in terms of ACC, NMI and
AMI.

Compared with current state-of-the-art performance that
GSDPMM reports, NVTC outperforms GSDPMM by 0.147,
0.033 and 0.051 respectively in terms of ACC, NMI, and AMI



TABLE II
CLUSTERING PERFORMANCE (ACC, NMI, AMI) OF NVTC WITH A COMPARISON TO FIVE BASELINE MODELS INCLUDING VAE+GMM, VADE,

LCK-NFC, GSDPMM AND LDA ON FOUR DATASETS.

Metrics NVTC VAE+GMM VaDE LCK-NFC GSDPMM LDA

20NG
ACC 0.7247 0.5365 0.5678 0.5321 0.5776 0.5503
NMI 0.7011 0.6427 0.6322 0.6278 *0.667 *0.602
AMI 0.6889 0.5966 0.6175 0.5531 0.6375 0.5422

Reuters
ACC 0.8132 0.6289 0.7938 0.6077 0.7133 0.6033
NMI 0.5654 0.4753 0.5021 0.4306 0.4935 0.4132
AMI 0.5534 0.4697 0.4969 0.4297 0.4921 0.4013

Reuters-16
ACC 0.5877 0.5103 0.5233 0.4319 0.5177 0.4001
NMI 0.5115 0.4721 0.4832 0.4499 0.4739 0.4067
AMI 0.4357 0.4067 0.4132 0.3677 0.4099 0.3586

Yahoo
ACC 0.6220 0.5667 0.5745 0.5679 0.5724 0.5633
NMI 0.5170 0.4339 0.4651 0.4196 0.4725 0.4123
AMI 0.4951 0.4198 0.4576 0.4088 0.4652 0.3969

* is from the original paper of GSDPMM.

on 20NG. It is because that NVTC, as an instantiation of
deep latent variable models and a variant of VAEs, has a
stronger ability to extract complex internal structure of texts
than traditional generative models.

From Table II, we can also find that the performance of
NVTC is much better than VAE+GMM and LDA. Obviously,
NVTC learns clustering-friendly text representations, which
enhances the performance of text clustering. While comparing
NVTC with VAE+GMM or LDA, their major difference is that
NVTC jointly optimizes the feature extraction and clustering.
This indicates that it is more effective to simultaneously
learn text features and cluster documents, which verifies the
observations in [27].

The performance of NVTC is also much better than LCK-
NFC, though the latter also jointly extracts text features and
learns cluster assignments. This is because that NVTC models
the generative process of documents via a deep generative
model, which incorporates the network loss and the clustering
loss and has the inherent superiority in extracting complex fea-
tures of texts, while LCK-NFC only optimizes the clustering
loss which is calculated by the Silhouette Coefficient in its
training process. LCK-NFC has the risk of learning corrupted
text representations and it is hard for it to reveal the complex
structure of texts.

Experimental results also show that NVTC is better than
VaDE at text clustering. This is because these two models have
different approximations of the posterior in the derivation loss
function. Specifically, VaDE approaches the variational poste-
rior q(z, y|x) with q(y|x)q(z|x) according to the mean-field
theory, and NVTC factorizes q(z, y|x) to q(y|z)q(z|x) based
on the real generative process of texts. Actually, there really
exists a relation b etween z and y when conditioning on x.
Although VaDE takes some tricks to mitigate the information
loss caused by the assumption of the mean-field distribution,
it really has a negative impact on text clustering results. In
addition to better text clustering performance, NVTC is easy to
train, because it dose not need to pretrain the internal encoder
and decoder by executing other additional models, however
in VaDE, networks need to be pretrained by stacked auto-
encoders.

Moreover, NVTC can simultaneously get very good perfor-

TABLE III
PPLs OF NVTC, NVDM, VADE AND LDA ON 20NG AND REUTERS.

LATENT VARIABLES ARE SET TO HAVE 50 AND 200 DIMENSIONS.

NVTC NVDM VaDE LDA
50d 200d 50d 200d 50d 200d 50d 200d

20NG 687 701 796 830 778 821 996 971
Reuters 486 509 542 521 531 546 1367 1124

mance in all the three metrics on 20NG, while ACCs of other
baseline models are far lower than their NMIs, as shown in
the first two rows of Table II. Among all the text datasets,
NVTC gets the worst performance on Yahoo because it has
more noise data and even supervised classification models
cannot perform well on them. However, NVTC gets better
performance than other models on Yahoo, which shows that
it has stronger ability of clustering texts.

C. Document modeling results

As a by-product of the effective text clustering, NVTC
can learn the latent embedding of each document effectively
in the unsupervised setting. These latent embeddings can be
used in a number of downstream text mining tasks. Here, the
latent embedding represents one code of the original document
in the latent space. We compare the capability of document
modeling of NVTC with that of VaDE, LDA and NVDM [23]
which is a instantiation of VAEs for documents, giving up
GSDPMM and LCK-NFC because they cannot output effective
embeddings of documents. Specifically, we make the encoder
and decoder structure of NVDM the same as the encoder and
decoder of NVTC to make ensure a fair comparison. Following
[23], we evaluate the capability of text modeling by using the
variational lower bound to approximate PPLs on texts datasets.

As shown in Table III, the results show that the PPLs of
NVTC are lower than any other models in both text datasets,
which demonstrates that NVTC has a stronger capability of
document modeling than any other models.

In order to analyze the internal structure of the embeddings
learned by these models, we visualize the latent embeddings
by mapping the 50-dimensional embeddings on 20NG dataset
into two-dimensional vectors using t-SNE [29] and project
them in a two-dimensional plane. Fig. 4 shows the projections



TABLE IV
SEMANTIC INTERPRETATION OF THE LATENT VARIABLE. TOP-10 WORDS ARE THE WORDS WITH TOP-10 HIGHEST WEIGHTS. THE FIRST ROW REFERS TO

THE DEDUCED TOPICS.

Topic Computer University Email Space Religion Medical

Top-10
words

card berkeley file earth god health
window duke list planet christian medical

mac purdue mail nasa jesus doctor
pc princeton ftp moon church disease

driver yale send shuttle church patient
monitor stanford addresss launch bible drug

disk colorado data satellite christ treatment
software mit email station love medicine
memory geogia package flight heaven cancer
modem harvard message orbit faith gordon

(a) (b)

Fig. 4. Visualization of 50-dimensional latent embeddings using t-SNE.
Different colors correspond to different ground-truth category labels. (a) is
the projection of latent embeddings learned by NVDM on the 20NG dataset.
(b) is the projection of latent embeddings learned by NVTC on the 20NG
dataset.

(a) 20NG (b) Yahoo

Fig. 5. NMIs of NVTC for clustering on 20NG and Yahoo when k varies.

of latent embeddings learned by NVDM and NVTC, where
each dot represents a document and the color of the dot
indicates its ground-truth category label. It is obvious that the
embeddings learned by NVTC indicate a better discriminative
quality since the embeddings in different categories are sepa-
rated more clearly and the embeddings in the same categories
are gathered more closely.

The reason why NVTC has a stronger capability of docu-
ment modeling than NVDM is that assumptions of their latent
variable priors are different. NVDM assumes that the latent
variable is generated from a Gaussian distribution. From this
perspective, NVDM is an instantiation of VAEs. However,
NVTC assumes that the prior distribution of the latent variable
is a mixture of Gaussians which makes latent embeddings
more clustering-friendly.

Besides, we observe that latent embeddings learned by

(a) k=10 (b) k=20

(c) k=30 (d) k=40

Fig. 6. Projections of latent embeddings learned by NVTC on two-
dimensional plane when k is set to different values.

NVTC can also be interpreted by the topics of texts. As
mentioned in Section III-B, each row of W ∈ Rd×|V | is
analogous to the topic-word distribution of the topic model,
and the element values of W denote the probabilities of words.
Thus, each dimension of the embedding is corresponding to a
specific topic. As same as studies in the regular topic models,
the semantic interpretation of each topic can be represented by
the words with top-n highest values in the row of W. Table IV
shows the semantic interpretation of the 50-dimensional latent
embeddings learned by NVTC on 20NG. We sample 6 topics
randomly and show the top-10 representative words in the
second row of Table IV. According to these representative
words, we can deduce the relative topics such as Computer,
University and etc., which are consistent with the topics in the
first row of Table IV. However, it is worth noting that this kind
of topical interpretability of latent embeddings has not been
explicitly analyzed by other state-of-the-art text clustering
models, including GSDPMM and VaDE.



D. The analysis of hyper-parameter k

In the previous comparison experiments, k is given as
a hyper-parameter and set to the number of ground-truth
categories of texts. To analyze the impact of different k on
the clustering performance of NVTC, we set k to different
values and conduct experiments on 20NG and Yahoo datasets.
Figs. 5(a) and 5(b) show NMI values of the 20NG and Yahoo
datasets when k varies. As we can see, NVTC obtains the
highest NMI on 20NG when k is set to 20, and obtains
the highest NMI on Yahoo when k is set to 10. These two
numbers are exactly matched with the numbers of ground-
truth categories of 20NG and Yahoo, respectively.

Fig. 6 shows the projections of latent embeddings learned
by NVTC on the 20NG dataset under different k, i.e., 10,
20, 30, and 40. Different colors represent different cluster-
ing assignments. Obviously, NVTC can cluster documents
effectively under different k. Specifically, when k = 20, the
boundaries of clusters are more discriminative, which indicates
that these latent embeddings are more effective to express the
information of the ground-truth categories of text datasets.

V. CONCLUSION

We propose a new and more effective text clustering
model NVTC with a mixture-of-Gaussians prior based on
the neural variational inference. Experimental results show
that NVTC significantly outperforms several baseline models
including VAE+GMM, GSDPMM, VaDE, LDA and LCK-
NFC in terms of ACC, NMI and AMI, and achieves the state-
of-the-art text clustering performance on all the experimental
benchmark datasets. Besides the more effective clustering
performance, NVTC learns latent embeddings of texts in a
lower-dimensional continuous latent space. Each dimension of
the latent embeddings is in one-to-one correspondence with
the topic of the text, so that NVTC has certain semantic
interpretability. Furthermore, NVTC clustering results can be
used for text storing and retrieval, and the learned latent
embeddings of texts can be used in many downstream text
mining tasks, such as text similarity calculation. As the
following research, we will incorporate more textual features
(e.g., sequential information) into NVTC and introduce pre-
trained word embeddings into NVTC to further improve the
performance of text clustering.
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